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Abstract

This paper analyzes the consistency, rate of convergence and limiting distributions of

parameter estimates in models where the trend function exhibits a slope change at some

unknown date and the errors can be either stationary or have a unit root. These estimates are

obtained by minimizing the sum of squared residuals in simple regressions involving a

constant, a trend, a slope shift regressor and possibly a level shift regressor. Special attention is

given to the effects induced by alternative specifications of the slope shift regressor and the

inclusion or exclusion of a level shift regressor. Some surprising results are found for which we

provide more detailed explanations. We also show via simulations that our asymptotic results

provide good approximations in finite samples. We illustrate the issues analyzed applying our

results to investigate dates and magnitudes of changes in the growth rates of (log) real per

capita GDP series for 10 countries using a historical data set that covers the period 1870–1986.
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1. Introduction

Both the statistics and econometrics literature contain a vast amount of work
on issues related to structural change (see, e.g., the surveys by Krishnaiah and
Miao, 1988; Bhattacharya, 1994 as well as the monograph by Csörgó and Horváth,
1997). The econometric literature has witnessed recently an upsurge of interest in
extending procedures to various models with an unknown change point. With
respect to the problem of testing for structural change, recent contributions include
Andrews (1993) and Andrews and Ploberger (1994). Issues about the distributional
properties of the estimates, in particular those of the break date, have also
been considered by Bai (1994, 1997). These testing and inference issues have
been addressed in the context of multiple structural changes by Bai and Perron
(1998, 2003).

Most of the work in this literature has concentrated on the case where the
regressors and the errors are stationary. Issues related to structural change are also
important in the context of trending regressors and non-stationary time series
following the work of Perron (1989), in particular. In that paper, it was argued that
inference about unit roots are affected by changes in the intercept and slope of the
trend function of the time series. In the literature that ensued, many different
procedures have been suggested pertaining to the unit root problem but surprisingly
little work have addressed the problem of estimating the break dates and forming
confidence intervals. The aim of this paper is to fill this gap by analyzing the
consistency, rate of convergence and limiting distributions of parameter estimates in
models where the trend function exhibit a slope change at some unknown date and
the errors can be either stationary or have a unit root.

Work related to this problem include Feder (1975) who considers estimating the
joint points of polynomial type segmented regressions. Closely related to our work is
the study of Bai et al. (1998) who analyze the limiting distribution of an estimated
break for non-stationary type series with a slope change. The analysis is, however,
quite different and more restrictive insofar as inference about a change in a linear
trend is concerned (see Remark 3 below). Our results, in particular, allows different
specifications concerning the role of an intercept shift. Other contributions include
Chu and White (1992) who provide a test for a change in a trend function. The
problem of testing for a change in the trend function of a series allowing the errors to
be stationary or integrated has also been addressed by Perron (1991) and Vogelsang
(1997). Of related interest are also the studies of Hansen (1992) and Hansen and
Johansen (1999) who build on the work of Nyblom (1989) to study structural break
in integrated variables. Lumsdaine and Papell (1997) consider unit root tests
allowing for two structural changes in the trend function. Inoue (1999) presents a test
to establish the cointegrating rank of a system of variables in the presence of a trend
break at an unknown date. Seo (1998) derived tests for structural breaks within a
cointegrated vector autoregressive system, though his study does not allow for a
break in the trend function. Finally, Hansen (2003) considers multiple breaks in any
parameter of a cointegrated vector autoregressive system, though he assumes the
break dates to be known.
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The issues to be investigated are best motivated using real data series. To that
effect, we consider an historical data set of (log) real per capita GDP series from
1870 to 1986 for 10 different countries: Australia, Canada, Denmark, France,
Germany, Italy, Norway, Sweden, the United Kingdom and the United States.1 The
series are presented in Fig. 1 where the dotted line is a fitted trend function obtained
by regressing the series on a constant, a trend, an intercept shift and a slope shift
where the break date is selected by minimizing the sum of squared residuals from the
regression (see Model II in Section 2). From this figure it seems clear that most series
are characterized by at least one (and in most cases only one) major shift in the slope
of the trend function (with perhaps the exception of the United States). At the same
time as the shift in slope occurs there is a clear tendency, for most countries, to have
a level shift. This level shift is, however, of different relative importance across
counties, being strongest for France and weakest for Norway and Sweden. Also, the
dates of the breaks are not common across countries. They occur at the time of
World War II for France, Germany and Italy; at the beginning of the 1930s for
Australia and around the time of World War I for Sweden and the United Kingdom.
Of interest to characterize the nature of these series is whether the noise component
can be viewed as stationary or integrated (i.e., whether the series have a unit root or
not). Using tests that allow for a change in intercept and slope at an unknown date,
Perron (1992) concludes that the unit root is rejected at the 5% level for Australia,
Canada, Denmark, France, Germany, the United Kingdom and the United States.
No rejection of the unit root was possible for Italy, Norway and Sweden.

The questions that arise from these real GDP series are the following: what are the
properties of the estimated break dates obtained by minimizing the sum of squared
residuals from a simple regression on the deterministic components? Are they
consistent, what is the rate of convergence and the limiting distribution? Do the
results differ if one assumes the noise component to be stationary or to have an
autoregressive unit root? Are the estimates still consistent if a unit root is present?
How do these compare with those obtained in a context where both the regressors
and the errors are assumed to be stationary? How should one treat the level shift?
Should we discard it when the shift appears small and if so does that change the
properties of the estimated break dates and other parameters? In general, what is the
effect of a level shift on the precision of the estimated break date? Can a large level
shift improve the rate of convergence? If so, what kind of modelling device is needed?

These and other issues will be addressed in this paper whose structure is as follows.
Section 2 first describes the models considered, the assumptions made on the various
1This data set is the same as used by Kormendi and Meguire (1990) and Perron (1992) and was obtained

through the Journal of Money, Credit and Banking editorial office. All series are real GDP except for the

United States for which real GNP is used. For the United States, the series is real GNP from the National

Income and Products Accounts for the period 1929–1986, spliced to Romer’s (1989) estimates for the

period 1870–1928. For the United Kingdom, the series is real GDP from Feinstein (1972) for the period

1870–1947 spliced to the International Financial Statistics (IFS) series of the IMF for the period

1948–1986. For the remaining countries, the series are indices of annual real GDP from Maddison (1982)

spliced to the postwar IFS data. The population series used are from the same sources. A logarithmic

transformation is applied.
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Fig. 1. Annual log per capita gross domestic product (GDP): 1870–1986. The fitted trend function is

obtained by regressing the series on a constant, a trend, an intercept shift and a slope shift where the break

date is selected by minimizing the sum of squared residuals from the regression (see Model II).
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components and how the estimates are obtained. Three models are considered: a
joint broken trend (no level shift), a local disjoint broken trend (appropriate in the
case when the level shift is relatively small), and a global disjoint broken trend
(appropriate when the level shift is relatively large). In all cases, we consider two
assumptions on the noise component, namely that it is either stationary or is
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integrated of order one. Section 3 is the main body of the paper where for the six
scenarios considered we derive the consistency and rate of convergence of the
estimates of the break dates (or break fractions) and the limiting distributions of
these estimates as well as those of the other parameters. Section 4 presents simulation
results to show that our asymptotic results are good approximations to the finite
sample distributions and to illustrate when one should include a level shift as a
regressor. Section 5 offers intuitive explanations for some results that appear
surprising at first, in particular the fact that including a level shift regressor when not
needed can actually reduce the rate of convergence of the estimate of the break
fraction and induce a bimodal distribution. Section 6 presents empirical results for
the real per capita GDP series discussed above and Section 7 offers brief concluding
remarks. All derivations are included in a mathematical appendix.
2. The models considered

2.1. Deterministic and stochastic trends

Throughout, it is assumed that some variable of interest, yt; is the sum of some
systematic part dt and a random component, ut; i.e.

yt ¼ dt þ ut:

The models analyzed differ according to the assumptions made about both
components. For ut; we specify EðutÞ ¼ 0 and alternatively one of the following
two assumptions:

Assumption 1. ut � Ið0Þ: More specifically ut is such that T�1=2
P½Tr�

t¼1 ut ) sW ðrÞ

where s2 ¼ limT!1 T�1Eð
PT

t¼1 utÞ
2 exists and is strictly positive. Here ‘‘)’’ denotes

weak convergence in distribution (under the sup metric) and W ðrÞ is the unit Wiener
process.

Assumption 2. ut � Ið1Þ: More specifically ut ¼
Pt

j¼1 ej where the sequence et is
assumed to be Ið0Þ as defined in Assumption 1.

Remark 1. There are many sets of sufficient conditions to guarantee that the weak
convergence result stated in Assumption 1 holds. One that is fairly general is that
used in Phillips and Perron (1988), namely (a) supt Ejutj

gþZo1 for some g42 and
Z40 and (b) futg

1
1 is strong mixing with mixing numbers am that

satisfy
P1

1 a1�2=g
m o1: Alternatively, we can assume that ut is a linear process such

that ut ¼
P1

i¼0 ciet�i where fet;Ft�1g is a martingale difference sequence with Ft�1 the
filtration to which et is adapted. Also

P1

i¼0 ijcijo1 (see Phillips and Solo, 1992). Either
sets of conditions include the popular stationary and invertible ARMA processes.

For the systematic component dt; we consider three cases. The first specifies that dt

is a first-order linear trend with a one time change in slope such that the trend
function is joined at the time of break. The second specifies that dt is a first-order
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linear trend with a one time change in intercept and slope such that without an
intercept change, the trend function is joined at the time of break. The third
specification is similar except that the trend function is not restricted to be joined at
the time of break (in the absence of a change in intercept). The time of break is
denoted T1 and we define the break fraction as l ¼ T1=T : Hence, we have six
different models labelled as follows: I.a-joint broken trend with Ið1Þ errors; I.b-joint
broken trend with Ið0Þ errors; II.a-local disjoint broken trend with Ið1Þ errors; II.b-
local disjoint broken trend with Ið0Þ errors; III.a-global disjoint broken trend with
Ið1Þ errors; and III.b-global disjoint broken trend with Ið0Þ errors. We start by
specifying more precisely the data generating process (DGP) for each model.
2.1.1. Models I.a and I.b: joint broken trend with Ið1Þ or Ið0Þ errors

For the first two models, dt is specified by

dt ¼ m1 þ b1t þ bbBt; (1)

where Bt is a dummy variable for the slope change defined by

Bt ¼
0 if tpT1;

t � T1 if t4T1:

�

Here, the slope coefficient (or the rate of growth when a logarithmic transform is
applied) changes from b1 to b1 þ bb at the time point T1: However, the trend
function is continuous at T1: For this reason, we refer to this specification as a ‘‘joint
broken trend’’.
2.1.2. Models II.a and II.b: local disjoint broken trend with Ið1Þ or Ið0Þ errors

For these two models, dt is specified by

dt ¼ m1 þ b1t þ mbCt þ bbBt; (2)

where Ct is a dummy variable for the level shift defined by

Ct ¼
0 if tpT1;

1 if t4T1:

�

Note that mb and bb capture the change in the intercept and slope coefficients. At the
break point T1; the slope changes by bb and the level shifts by mb; which is negligible
compared to the level of the series m1 þ b1T1; hence the label ‘‘local disjoint
segmented trend’’.

Remark 2. As pointed out by Hatanaka and Yamada (1999) and others, when the
error term is an Ið1Þ process, the shift in the intercept cannot be identified.
Intuitively, it is impossible to distinguish a permanent shift in the intercept from a
permanent shock to the process (the Ið1Þ error). Later, we provide a rigorous
discussion about this identification issue. More surprisingly, we will show that even
when the error term is an Ið0Þ process, the intercept shift cannot be identified, either.
An intuitive explanation will be provided later.
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2.1.3. Models III.a and III.b: global disjoint broken trend with Ið1Þ or Ið0Þ errors

If one wants to model a permanent shift in the level of the series such that the
trend function is discontinuous at the break date even asymptotically, we can specify
the DGP as

dt ¼ m1 þ b1t þ mbCt þ bbB
dj
t ; (3)

where

B
dj
t ¼

0 if tpT1;

t if t4T1:

�

We label this model as a ‘‘global disjoint segmented trend’’ since, in contrast to the
previous ‘‘local disjoint segmented trend’’, the implied relative (to the overall level of
the trend function) level shift at the break date converges to bb=b1a0 as T ! 1;
since dT1þ1 � dT1

¼ b1 þ mb þ bbT1:
Note that, in practice, using Model II or III yields exactly the same results for the

estimates of the parameters T1; m1; b1 and bb: Nevertheless, as we shall see, the two
specifications yield drastically different asymptotic results, in particular pertaining to
the rate of convergence and the asymptotic distribution of the estimated break date.
As our simulations will highlight, limiting results obtained from model II (local
disjoint trend) will provide good approximations to the finite sample distributions
when the shift in level is small while those from model III will do so when the shift in
level is large. Hence, both asymptotic frameworks are complementary. These issues
are discussed in details in Section 4.

Remark 3. A special case of the general model considered by Bai et al. (1998) is that
of Model III with I(0) errors, with or without restricting mb ¼ 0: They also consider
an asymptotic framework, whereby the coefficient bb shrinks to zero at some suitable
rate. In the following, all results are obtained for fixed coefficients.

Remark 4. The DGP specified by Models II and III can be generalized to encompass
both as special cases by extending Model II allowing mb to be a function of the
sample size, i.e. mb ¼ kTa for some k40 and aX0: Model II obtains when a ¼ 0
while we recover Model III with a ¼ 1: It turns out that the results we shall derive for
Model II.a holds more generally when ao1=2 while those derived for Model III.a
hold when a41=2: When the errors are Ið0Þ; the results for Model III.b applies for
all values of a40: Hence, we shall continue with the classification described above
and discuss in various remarks how the results extend to the more general case. Note,
however, that Model III is not quite a special case since the regressors are not the
same. Nevertheless, the general conclusions will be the same, in particular for the
estimate of the break date.

2.2. The estimation method and a key inequality

All specifications discussed above can be expressed in matrix notation as

Y ¼ X T1
gþ U ;
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where Y 0 ¼ ½y1; . . . ; yT �; U 0 ¼ ½u1; . . . ; uT �; X 0
T1

¼ ½xðT1Þ1; . . . ;xðT1ÞT �; g0 ¼
ðm1; b1; mb;bbÞ and where, for Models I, xðT1Þ

0
t ¼ ½1; t;Bt�; for Models II,

xðT1Þ
0
t ¼ ½1; t;Ct;Bt�; and for Models III, xðT1Þ

0
t ¼ ½1; t;Ct;B

dj
t �: Note that the matrix

X T1
depends on the postulated value of the break date T1: The parameters are

assumed to be obtained using a global least-squares criterion. In particular, we have
the following estimate for the break date:

T̂1 ¼ arg min
T1

Y 0ð1 � PT1
ÞY ;

where PT1
is the projection matrix constructed using X T1

; i.e., PT1
¼

X T1
ðX 0

T1
X T1

Þ
�1X 0

T1
: Denoting by X T̂1

the matrix X constructed using the
least-squares estimate of the break date T̂1; the least-squares estimate of the
coefficients g is

ĝ ¼ ðX 0

T̂1
X T̂1

Þ
�1X 0

T̂1
Y

and the resulting sum of squared residuals is, for an estimated break fraction
l̂ ¼ T̂1=T ;

SSRðl̂Þ ¼
XT

t¼1

û2
t ¼

XT

t¼1

ðyt � xðT̂1Þ
0
tĝÞ

2
¼ Y 0ðI � PT̂1

ÞY

where PT̂1
is the projection matrix associated with X T̂1

; i.e. PT̂1
¼

X T̂1
ðX 0

T̂1
X T̂1

Þ
�1X 0

T̂1
:

The true values of the unknown coefficients will be denoted with a 0 superscript,
i.e. g0 ¼ ðm0

1;b
0
1;m

0
b; b

0
bÞ

0; T0
1; l

0
¼ T0

1=T ; X T0
1

is the matrix of regressors constructed
using the true value T0

1 for the break date, and PT0
1

is the associated projection
matrix, i.e. PT0

1
¼ X T0

1
ðX 0

T0
1

X T0
1
Þ
�1X 0

T0
1

: So the true data generating process is
assumed to be

Y ¼ X T0
1
g0 þ U :

Our aim is to derive the limit distribution of ðl̂� l0
Þ and ðĝ� g0Þ for the six cases

described above assuming that there exists at least a shift in slope. To that effect, we
make the following assumption on the true coefficients.

Assumption 3. b0
ba0 and l0

2 ð0; 1Þ:

This assumption basically ensures that we have a one time break in the systematic
part and that the pre and post break samples are not asymptotically negligible which
is a standard assumption needed to derive any useful asymptotic result. Note that in
this asymptotic framework, the break date T0

1 increases as T increases. Hence, one
cannot properly consider the issue of whether the estimate T̂1 is consistent for T1:
Accordingly, we derive all consistency and distributional results in terms of the
estimate of the break fraction l̂ ¼ T̂1=T for l0 which is a fixed quantity as T

increases. We then use the resulting limit distributions to provide approximations to
the finite sample distributions of ðT̂1 � T0

1Þ:
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2.3. A key inequality

We now discuss a key inequality that will be used extensively to derive the various
limiting results. From the properties of projections, we have for all T,

SSRðl̂ÞpSSRðl0
Þ;

or

Y 0ðI � PT̂1
ÞYpY 0ðI � PT0

1
ÞY :

Since Y ¼ X T0
1
g0 þ U ; the above inequality implies that

g00X 0

T0
1

ðPT0
1
� PT̂1

ÞX T0
1
g0 þ 2g00X 0

T0
1

ðPT0
1
� PT̂1

ÞU þ U 0ðPT0
1
� PT̂1

ÞUp0

for all T. Note that PT0
1
X T0

1
¼ X T0

1
and X 0

T̂1
ðI � PT̂1

Þ ¼ 0; hence we can rewrite the

above inequality as follows:

g00ðX T0
1
� X T̂1

Þ
0
ðI � PT̂1

ÞðX T0
1
� X T̂1

Þg0

þ 2g00ðX T0
1
� X T̂1

Þ
0
ðI � PT̂1

ÞU þ U 0ðPT0
1
� PT̂1

ÞUp0: ð4Þ

This is the key inequality that we shall use repeatedly when deriving the asymptotic
properties for the different models. Finally, it is worth noting that

arg min
T1

½SSRðT1Þ� ¼ arg min
T1

½SSRðT1Þ � SSRðT0
1Þ�

¼ arg min
T1

½g00ðX T0
1
� X T1

Þ
0
ðI � PT1

ÞðX T0
1
� X T1

Þg0

þ 2g00ðX T0
1
� X T1

Þ
0
ðI � PT1

ÞU þ U 0ðPT0
1
� PT1

ÞU �:

This will be employed to derive the asymptotic distribution of the least-squares
estimate of the break fraction, l̂ ¼ T̂1=T :
3. Asymptotic properties

3.1. Consistency

We first consider the issue of the consistency of the estimated break fraction. We
show that l̂ is consistent for l0 in all models. To prove this, we show that, in
inequality (4), the first (non-negative) term would asymptotically dominate the
second and third terms (i.e., the first term grows at a faster rate than the other two) if
l̂ does not converge to l0: Hence, the inequality cannot hold asymptotically if l̂ does
not converge to l0: To this end, we first prove the following lemma. Note that here
and throughout the text, we use the label OðTaÞ and OpðT

aÞ in its strict sense, i.e.
meaning that the variables are not oðTaÞ and opðT

aÞ:

Lemma 1. Define

ðXX Þ � g0ðX T0
1
� X T1

Þ
0
ðI � PT1

ÞðX T0
1
� X T1

Þg;
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ðXUÞ � g0ðX T0
1
� X T1

Þ
0
ðI � PT1

ÞU ;

ðUUÞ � U 0ðPT0
1
� PT1

ÞU :

Under Assumptions 1–3, we have that uniformly over all generic T1 2 ½pT ; ð1 � pÞT �

for some arbitrarily small p such that l0
2 ½p; 1 � p�:2
1.
2

one

tec

wit
In Model I.a (joint broken trend with Ið1Þ errors),

ðXX Þ ¼ jT1 � T0
1j

2OðTÞ; ðXUÞ ¼ jT1 � T0
1jOpðT

3=2Þ and

ðUUÞ ¼ jT1 � T0
1jOpðTÞ:
2.
 In Model I.b (joint broken trend with Ið0Þ errors),

ðXX Þ ¼ jT1 � T0
1j

2OðTÞ; ðXUÞ ¼ jT1 � T0
1jOpðT

1=2Þ and

ðUUÞ ¼ jT1 � T0
1jOpðT

�1Þ:
3.
 In Model II.a (local disjoint broken trend with Ið1Þ errors),

ðXX Þ ¼ jT1 � T0
1j

3Oð1Þ; ðXUÞ ¼ jT1 � T0
1j

2OpðT
1=2Þ and

ðUUÞ ¼ jT1 � T0
1jOpðTÞ:
4.
 In Model II.b (local disjoint broken trend with Ið0Þ errors),

ðXX Þ ¼ jT1 � T0
1j

3Oð1Þ; ðXUÞ ¼ jT1 � T0
1j

3=2Opð1Þ and

ðUUÞ ¼ jT1 � T0
1j

1=2OpðT
�1=2Þ:
5.
 In Model III.a (global disjoint broken trend with Ið1Þ errors),

ðXX Þ ¼ jT1 � T0
1jOðT2Þ; ðXUÞpjT1 � T0

1jOpðT
3=2Þ and

ðUUÞpjT1 � T0
1jOpðTÞ:
6.
 In Model III.b (global disjoint broken trend with Ið0Þ errors),

ðXX Þ ¼ jT1 � T0
1jOðT2Þ; ðXUÞpjT1 � T0

1jOpðTÞ and

ðUUÞpjT1 � T0
1jOp T�1=2

� �
:

This trimming is assumed to ensure the invertibility of X 0
T1

X T1
in the projection matrix. Alternatively,

could simply drop the regressors Ct and Bt to calculate SSR when T1 ¼ 0 or T. This trimming is just a

hnical device used for simplicity. In practice, we need not use a trimming since T̂1 will equal to 0 or T

h zero probability given that we assume a break exists.
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Note that the term ðXX Þ is always non-negative since it is quadratic and ðI � PT̂1
Þ

is positive semi-definite. Given the above results, it is easy to enquire about
the consistency of l̂: For example, in Model I, if l̂Ql0; then ðXX Þ ¼ OðT3Þ; ðXUÞ ¼

OpðT
5=2Þ and ðUUÞ ¼ OpðTÞ: Therefore for large enough T, with some

positive probability, the positive term ðXX Þ dominates the other two terms ðXUÞ

and ðUUÞ such that inequality (4) will not hold with probability 1. Since we know
that the inequality (4) is true for all T, we have a contradiction and, hence, this
implies that l̂!pl

0: The consistency of l̂ to l0 is summarized in the following
theorem.

Theorem 2. Under Assumptions 1–3, in Models I–III, l̂ converges to l0 in probability.

Remark 5. For the generalized Model II with m0
b ¼ kTa; consistency holds as well.

3.2. Rate of convergence

Having investigated the issue of convergence of the estimate of the break fraction,
we can then derive the convergence rates which are summarized in the following
Theorem.

Theorem 3. Under Assumptions 1–3, the rates of convergence of l̂ are (with Ið1Þ errors

for Models-a and Ið0Þ errors for Models-b):
1.
 In Models I.a and II.a, l̂� l0
¼ OpðT

�1=2Þ;

2.
 In Model I.b, l̂� l0

¼ OpðT
�3=2Þ;
3.
 In Model II.b, l̂� l0
¼ OpðT

�1Þ;

4.
 In Models III.a and III.b, jl̂� l0

j ¼ opðT
�3Þ:
Remark 6. In Model II.b, ðl̂� l0
Þ is OpðT

�1Þ while it is OpðT
�3=2Þ in Model I.b,

hence the break fraction converges at a faster rate when the intercept shift regressor
is absent. This is an important and rather surprising result. Later, we will show in
details how allowing for an intercept shift may contaminate how precisely the break
date is estimated.

Remark 7. Consider the generalized Model II.a with m0
b ¼ kTa: When ao1=2; the

result is the same as for Model II.a; when a41=2; we have ðl̂� l0
Þ ¼ opðT

�2a�1Þ and
the qualitative conclusions are the same as for Model III.a. When the errors are Ið0Þ;
things are different. We have ðl̂� l0

Þ ¼ opðT
�2a�1Þ for all a40:

3.3. Limiting distribution of the estimate of the break date

Having considered the issue of convergence of the estimated break fraction to its
true value and the rate at which it does converge, we can now consider the problem
of deriving its limiting distribution. Note, however, that this can only be done for
those cases for which it was possible to obtain a given rate of convergence.
Accordingly, this section omits Model III from the analysis. Of particular interest,
our results show that the estimated break date has a Normal asymptotic distribution
in Model I while for Models II the limiting distribution is a complicated function of
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two-sided random processes which can, nevertheless, be simulated to obtain
appropriate confidence intervals. The following Theorem summarizes the main
results obtained whose proofs can be found in the appendix.

Theorem 4. Under Assumptions 1–3, we have (with Ið1Þ errors for Model.a and Ið0Þ
errors for Model.b):
1.
 In Model I.a,
ffiffiffiffi
T

p
ðl̂� lÞ!dNð0; 2s2= 15ðb0

bÞ
2
Þ

� �
;� �
2.
 In Model I.b, T3=2ðl̂� lÞ!dN 0; 4s2=½l0
ð1 � l0

Þðb0
bÞ

2
� ;R R R
3.
 For Model II.a, define x1 � ½
1

0 W ðrÞdr;
1

0 rW ðrÞdr;
1

l0 W ðrÞdr;R 1

l0 ðr � l0
ÞW ðrÞdr�0;x2 ¼ ½0; 0;W ðl0

Þ;
R 1

l0 W ðrÞdr�0;

x3�
R l0

0 ½ð3r2 � 2rl0
Þ=ðl0

Þ
2
�dW ðrÞ; x4 �

R 1

l0 ½ðr � 1Þð3r � 2l0
� 1Þ=ð1 � l0

Þ
2
�dW ðrÞ;

O1 �

4

l0 � 6

ðl0Þ2
2

l0
6

ðl0Þ2

� 6

ðl0Þ2
12

ðl0Þ3
� 6

ðl0Þ2
� 12

ðl0Þ3

2

l0 � 6

ðl0Þ2
4

l0ð1�l0Þ
6 1�2l0

ðl0Þ2ð1�l0Þ2

6

ðl0Þ2
� 12

ðl0Þ3
6 1�2l0

ðl0Þ2ð1�l0Þ2
12 3ðl0Þ2�3l0þ1

ðl0Þ3ð1�l0Þ3

2
66666664

3
77777775
;

O2 �

� 4
ðl0Þ2

12
ðl0Þ3

� 2
ðl0Þ2

� 12
ðl0Þ3

12

ðl0Þ3
� 36

ðl0Þ4
12

ðl0Þ3
36

ðl0Þ4

� 2

ðl0Þ2
12

ðl0Þ3
4 2l0�1

ðl0Þ2ð1�l0Þ2
12

ðl0Þ3
3ðl0Þ2�3l0þ1

ðl0�1Þ3

� 12

ðl0Þ3
36

ðl0Þ4
12

ðl0Þ3
3ðl0Þ2�3l0þ1

ðl0�1Þ3
36

ðl0Þ4
4ðl0Þ3�6ðl0Þ2þ4l0�1

ðl0�1Þ4

2
66666664

3
77777775
:

Also define ZnðmÞ as follows: Znð0Þ ¼ 0; ZnðmÞ ¼ Z1ðmÞ for mo0 and ZnðmÞ ¼

Z2ðmÞ for m40; with

Z1ðmÞ ¼ ðb0
bÞ

2
jmj3=3 þ m2sb0

bx4 þ ms2½2x02O1x1 � x01O2x1�; mo0;

Z2ðmÞ ¼ ðb0
bÞ

2
jmj3=3 þ m2sb0

bx3 þ ms2½2x02O1x1 � x01O2x1�; m40:

Then,
ffiffiffiffi
T

p
ðl̂� lÞ!dm1

III � arg minm ZnðmÞ:

4.
 For Model II.b, define a stochastic process SnðmÞ on the set of integers as follows:

Snð0Þ ¼ 0; SnðmÞ ¼ S1ðmÞ for mo0 and SnðmÞ ¼ S2ðmÞ for m40; with

S1ðmÞ ¼
X0

k¼mþ1

ðm0
b þ b0

bkÞ2 � 2
X0

k¼mþ1

ðm0
b þ b0

bkÞuk; m ¼ �1;�2; . . . ;

S2ðmÞ ¼
Xm

k¼1

ðm0
b þ b0

bkÞ2 þ 2
Xm

k¼1

ðm0
b þ b0

bkÞuk; m ¼ 1; 2; . . . :
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If futg is strictly stationary with a continuous distribution, Sn is a two-sided random

walk with drift, and Tðl̂� lÞ!dm1
IV � arg minm SnðmÞ:

Remark 8. Consider the generalized Model II.a with m0
b ¼ kTa: When ao1=2; the

limit distribution is the same as for Model II.a; when a ¼ 1=2; it is slightly different
due to the presence of an additional terms.

These results show interesting qualitative differences across models. First, note
that for Models I.a and I.b, the limiting distributions of the break date do no depend
on the structure of the errors (apart from the variance term s2 needed to properly
scale the distribution). In particular, the results remain the same irrespective of the
nature of the serial correlation. This is in stark contrast to results obtained in a
stationary context in which case the limiting distribution of the estimated break date,
in this fixed shift case, not only depends on the properties of the residuals but in
particular on their exact distribution in finite samples (see, e.g., Bai, 1997). This
feature in the stationary case, has led to the development of asymptotic distributions
obtained under the so-called ‘‘shrinking shifts asymptotic experiment’’ to get rid of
the dependence of the limiting distribution on the exact distribution of the errors
(and other regressors). Our results show that in the non-stationary trending case,
there is no need to resort to such alternative asymptotic approximations.

Models I.a and I.b show further interesting differences. First, when the errors are
Ið1Þ; the limiting distribution is invariant to the location of the break. In contrast,
when the errors are Ið0Þ; the limiting distribution depends on the location of the
break in such a way that (given other parameter values) the variance is smaller the
closer the break is to the middle of the sample. In both cases, as expected, the
variance decreases as the shift in slope increases. The simple limiting distributions
obtained make it fairly easy to construct confidence intervals.

For Models II.a and II.b which incorporate a level shift, the limiting distributions
obtained are strikingly different from those for Models I.a and I.b and are similar in
structure to those obtained in the stationary case. Here, the limiting distributions are
expressed as particular functions of a two sided random process involving many
nuisance parameters. However, when the errors are Ið1Þ; it does not depend on the
exact distribution of these errors. Hence, confidence intervals can be computed using
consistent estimates of the various nuisance parameters and simulations of the
various functionals of the Weiner process to approximate the distribution. When the
errors are Ið0Þ; it is still possible to use simulations to compute the confidence
intervals but the limiting distribution depends on the exact distribution of the errors
making the result less attractive in practice. In this case, it is possible to get rid of the
dependence of the limiting distribution on the exact distribution of the errors by
adopting an asymptotic framework whereby the shift is shrinking as the sample size
increases (see Bai et al., 1998).

Comparing the results for Models I and II (with either Ið1Þ or Ið0Þ errors), we find
that the level shift plays an important role in the limiting distribution of the
estimated break date. Suppose that the data generating process specifies no level
shift, i.e. m0

b ¼ 0: In Model I, no level shift is allowed in the regression while in Model
II it is allowed via the regressor Ct: Our results show that introducing such an
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irrelevant regressor changes the rate of convergence of the estimated break date and
its asymptotic distribution. We return to this important issue in a subsequent section
with a detailed explanation.

Note that the level shift coefficient m0
b does not enter into the limiting distribution

of the estimated break date in Model II.a. The intuition for this feature is that as the
sample size increases, the magnitude of the level shift, relative to the level of the trend
function, becomes negligible and in the limit its effect is masked by the variation in
the errors which are Ið1Þ:3 Hence, we can expect limiting results obtained from
Model II.a to be adequate approximations in finite samples when the level shift m0

b is
relatively small and that the quality of the approximation would deteriorate as the
level shift increases.4 For breaking trend function with large level shifts and Ið1Þ
errors, it would then seem more appropriate to use limiting results from Model III.a
where the importance of the level shift does not vanish as the sample size increases. A
problem, however, is that in this case it was not possible to establish a rate of
convergence of the break fraction l̂: Accordingly, no limiting distribution is available
to provide a confidence interval. Hence, in the case of Model III.a, to obtain an
asymptotic approximation that is influenced by the level shift m0

b; we consider using
an asymptotic expansion of the distribution obtained for Model II.a that retains
higher order terms affected by the level shift m0

b and the sample size T. This
expansion, derived in the appendix is described in the following Theorem.

Theorem 5. For Model II.a (Ið1Þ errors), using terms defined in Theorem 4, define a

stochastic process Vnðn;T ; l0;m0
b;b

0
b;sÞ on the set of integers as follows:

Vnð0Þ ¼ 0;VnðnÞ ¼ V 1ðnÞ for no0 and VnðnÞ ¼ V2ðnÞ for n40; with

V 1ðn;T ; l0;m0
b;b

0
b;sÞ ¼

X0

k¼nþ1

½m0
b þ b0

bk�2 þ 2sx4T1=2
X0

k¼nþ1

½m0
b þ b0

bk�

þ ns2T ½2x02O1x1 � x01O2x1�;

V 2ðn;T ; l0;m0
b;b

0
b;sÞ ¼

Xn

k¼1

½m0
b þ b0

bk�2 þ 2sx3T1=2
Xn

k¼1

½m0
b þ b0

bk�

þ ns2T ½2x02O1x1 � x01O2x1�:

Then under Assumptions 2–3, we have the following approximation to the finite sample

distribution of T̂1: T̂1 � T0
1 � arg minn Vnðn;T ; l0; m0

b; b
0
b;sÞ:

Note that this approximation still does not depend on the finite sample
distribution of the errors but only on various nuisance parameters which can be
estimated. Hence, it is possible to simulate the confidence interval. It is important to
note that now not only the slope change b0

b but also the level shift m0
b affect the stated

distribution. Simulations to be presented subsequently show that this expansion
provides an excellent approximation to the finite sample distribution.
3In Model II.b, the level shift also becomes small relative to the overall level of the trend function but it

still has an effect on the asymptotic distribution since the errors are Ið0Þ and do not mask its effect.
4These assertions are corroborated by simulation experiments reported in a later section of the paper.
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3.4. The limit distribution of the other parameters

We now turn to the limiting distributions of the other parameter estimates
involved in each model, namely, ðm̂1; b̂1; b̂bÞ and m̂b for Models II, and III. A
standard result in the stationary case (see, e.g., Bai, 1997 or Bai and Perron, 1998) is
that the limiting distribution of the parameters of the model (other than the
break date) is the same whether one uses the estimated break date or its true
value. To investigate whether or not such an equivalence holds with trend
and/or Ið1Þ errors, we derive the limiting distributions assuming first that the break
date is estimated (by minimizing the sum of squared residuals) and then assuming it
is fixed at some known true value, in which case the estimates are denoted by
ðm̄1; b̄1; b̄bÞ and m̄b: The results, derived in the appendix, are summarized in the
following theorem.

Theorem 6. Under Assumptions 1–3, we have that:
1(a).
 In Model I.a, the limiting distribution of ĝ (using the estimated T̂1) is

T�1=2ðm̂1 � m0
1Þ

T1=2ðb̂1 � b0
1Þ

T1=2ðb̂b � b0
bÞ

2
64

3
75!

d
N

0

0

0

2
64
3
75;s2

2
15
l0

� 1
10

1
10

� 1
10

6
5l0 � 6

5l0

1
10 � 6

5l0
6

5l0ð1�l0Þ

2
664

3
775

0
BB@

1
CCA:
1(b).
 In Model I.a, the limiting distribution of ḡ (assuming a known break

date T0
1) is

T�1=2ðm̄1 � m0
1Þ

T1=2ðb̄1 � b0
1Þ

T1=2ðb̄b � b0
bÞ

2
664

3
775

!
d

N

0

0

0

2
664
3
775; s2

1
10
l0

þ 1
30

� 1
10

ðl0Þ2�l0þ1

l0
1
20

3l0�2

l0ðl0�1Þ

� 1
10

ðl0Þ2�l0þ1

l0
3
10

2ðl0Þ2þl0þ1

ðl0Þ2
� 3

20
2ðl0Þ2�l0�2

ðl0Þ2ðl0�1Þ

1
20

3l0�2

l0ðl0�1Þ
� 3

20
2ðl0Þ2�l0�2

ðl0Þ2ðl0�1Þ

3

10ðl0Þ2ðl0�1Þ2

2
666664

3
777775

0
BBBBB@

1
CCCCCA:
2(a).
 In Model I.b, the limiting distribution of ĝ (using the estimated T̂1) is

T1=2ðm̂1 � m0
1Þ

T3=2ðb̂1 � b0
1Þ

T3=2ðb̂b � b0
bÞ

2
64

3
75!

d
N

0

0

0

2
64
3
75;s2

4

l0 � 6

ðl0Þ2
6

ðl0Þ2

� 6

ðl0Þ2
12

ðl0Þ3
� 12

ðl0Þ3

6

ðl0Þ2
� 12

ðl0Þ3
12 3ðl0Þ2�3l0þ1

ðl0Þ3ð1�l0Þ3

2
6664

3
7775

0
BBB@

1
CCCA:
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2(b).
 In Model I.b, the limiting distribution of ḡ (assuming a known break

date T0
1) is

T1=2ðm̄1 � m0
1Þ

T3=2ðb̄1 � b0
1Þ

T3=2ðb̄b � b0
bÞ

2
64

3
75!

d
N

0

0

0

2
64
3
75;s2

l0þ3

l0 �3 1þl0

ðl0Þ2
3

ðl0Þ2ð1�l0Þ

�3 1þl0

ðl0Þ2
3 3l0þ1

ðl0Þ3
3 2l0þ1

ðl0Þ3ðl0�1Þ

3
ðl0Þ2ð1�l0Þ

3 2l0þ1
ðl0Þ3ðl0�1Þ

3
ðl0Þ3ð1�l0Þ3

2
66664

3
77775

0
BBBB@

1
CCCCA:
3(a).
 In Model II.a, the limiting distribution of ĝ (using the estimated T̂1) is

T�1=2ðm̂1 � m0
1Þ

T1=2ðb̂1 � b0
1Þ

T�1=2ðm̂b � m0
bÞ � b0

bðT̂1 � T0
1Þ=

ffiffiffiffi
T

p

T1=2ðb̂b � b0
bÞ

2
66664

3
77775) sO1

R 1

0 W ðrÞdrR 1

0 rW ðrÞdrR 1

l0 W ðrÞdrR 1

l0ðr � l0
ÞW ðrÞdr

2
666664

3
777775:

This implies that the marginal limit distribution of m̂1; b̂1 and b̂b is the same as in

Model I.a and that m̂b is asymptotically unidentified since

T�1=2½ðm̂b � m0
bÞ � b0

bðT̂1 � T0
1Þ� ) x3 þ x4;

where x3 and x4 are random variables defined in Theorem 4.3.

3(b).
 In Model II.a, the limiting distribution of ḡ (assuming a known break

date T0
1) is

T�1=2ðm̄1 � m0
1Þ

T1=2ðb̄1 � b0
1Þ

T�1=2ðm̄b � m0
bÞ

T1=2ðb̄b � b0
bÞ

2
66664

3
77775!

d
N

0

0

0

0

2
6664
3
7775;s2

2
15
l0

� 1
10

� 1
30
l0 1

10

� 1
10

6

5l0 � 1
10

� 6

5l0

� 1
30
l0

� 1
10

2
15

0
1
10

� 6

5l0 0 6

5ð1�l0Þl0

2
666664

3
777775

0
BBBBB@

1
CCCCCA:
4(a).
 For Model II.b, the marginal limiting distribution of m̂1; b̂1 and b̂b is the same as

in Model I.b. Also, m̂b is asymptotically unidentified and m̂b � m0
b ) b0

bm1
IV; with

m1
IV; defined in Theorem 4.4
4(b).
 In Model II.b, the limiting distribution of ḡ (assuming a known break

date T0
1) is

T1=2ðm̄1 � m0
1Þ

T3=2ðb̄1 � b0
1Þ

T1=2ðm̄b � m0
bÞ

2
666664

3
777775!

d

T3=2ðb̄b � b0
bÞ
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N

0

0

0

0

2
666664

3
777775;s

2

4

l0 � 6

ðl0Þ2
2

l0
6

ðl0Þ2

� 6

ðl0Þ2
12

ðl0Þ3
� 6

ðl0Þ2
� 12

ðl0Þ3

2

l0 � 6

ðl0Þ2
� 4

ðl0�1Þl0 �6 �1þ2l0

ðl0Þ2ðl0�1Þ2

6

ðl0Þ2
� 12

ðl0Þ3
�6 �1þ2l0

ðl0Þ2ðl0�1Þ2
12 3ðl0Þ2�3l0þ1

ðl0Þ3ð1�l0Þ3

2
666666664

3
777777775

0
BBBBBBBB@

1
CCCCCCCCA
:

5.
 In Model III.a, the limiting distributions of ĝ (using the estimated T̂1) and ḡ
(assuming a known break date T0

1) are the same and given by

T�1=2ðm̂1 � m0
1Þ

T1=2ðb̂1 � b0
1Þ

T�1=2ðm̂b � m0
bÞ

T1=2ðb̂b � b0
bÞ

2
66664

3
77775! N

0

0

0

0

2
6664
3
7775;s2

2
15
l0

� 1
10

� 2
15
l0 1

10

� 1
10

6

5l0
11
10

� 6

5l0

� 2
15
l0 11

10
2
15

8l0þ1

1�l0
6

5ðl0�1Þ

1
10

� 6

5l0
6

5ðl0�1Þ

6

5l0ð1�l0Þ

2
666664

3
777775

0
BBBBB@

1
CCCCCA:
6.
 In Model III.b, the limiting distributions of ĝ (using the estimated T̂1) and ḡ
(assuming a known break date T0

1) are the same and given by

T1=2ðm̂1 � m0
1Þ

T3=2ðb̂1 � b0
1Þ

T1=2ðm̂b � m0
bÞ

T3=2ðb̂b � b0
bÞ

2
666664

3
777775

!
d

N

0

0

0

0

2
666664

3
777775; s

2

4

l0 � 6

ðl0Þ2
� 4

l0
6

ðl0Þ2

� 6

ðl0Þ2
12

ðl0Þ3
6

ðl0Þ2
� 12

ðl0Þ3

� 4

l0
6

ðl0Þ2
4 4ðl0Þ2�2l0þ1

l0ð1�l0Þ3
�6 4ðl0Þ2�3l0þ1

ðl0Þ2ð1�l0Þ3

6

ðl0Þ2
� 12

ðl0Þ3
�6 4ðl0Þ2�3l0þ1

ðl0Þ2ð1�l0Þ3
12 3ðl0Þ2�3l0þ1

ðl0Þ3ð1�l0Þ3

2
666666664

3
777777775

0
BBBBBBBB@

1
CCCCCCCCA
:

Remark 9. Consider the generalized Model II.a (Ið1Þ errors) with m0
b ¼ kTa: When

ao1=2; the result is the same as for Model II.a; when a41=2; they are the same as
for Model III.a. When the errors are Ið0Þ; things are different and the results for
Model III.b applies for all a40:

Interestingly, except for the unidentified intercept shift mb; the other parameters,

m̂1; b̂1 and b̂b; share the same limiting distribution in Models I.a, II.a and III.a. A
similar feature holds across Models I.b, II.b and III.b. The important implication of
this result is that if one is mainly interested in making asymptotic inference on these
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three parameters, the exact model specification does not matter (of course, except for
the fact that we need the condition that mb ¼ 0 for Model I.a and I.b). However, the
model specification does matter for asymptotic inference on the break date and the
intercept shift.

As we discussed earlier, allowing for a level shift can possibly affect how good an
estimate T̂1 is for the break date in Models II.a and II.b. On the other hand, we see
the ‘‘feedback’’ effect of contaminated identification on the limiting distribution for
m̂b: For example, in Model II.b, m̂b is asymptotically linearly correlated with T̂1 in the
sense that the limiting distribution of m̂b is proportional to the limiting distribution of
T̂1; the proportionality factor being the change in slope b0

b: We provide some
intuition for this result in the next section.

It is of some interest to note that it is possible to estimate m̂1 and b̂1 more precisely
by estimating the break date rather than imposing a known fixed break date even if
the latter correspond to the true break date. An example can be obtained by looking
at the results for model I.a and comparing parts 1(a) and 1(b) of the Theorem. We
have varðm̄1Þ ¼ ð1=10Þl0

þ ð1=30Þ4ð2=15Þl0
¼ varðm̂1Þ and varðb̄1Þ � varðb̂1Þ ¼ 3ð1 �

l0
Þð2l0

� 1Þ=10ðl0
Þ
2
Þ; the sign of which depends on l0:
4. Simulation experiments

The aim of the simulation experiments we present is to provide answers to the
following questions: (1) What are the important features of the distributions of the
estimates?; (2) How adequate are the asymptotic distributions obtained as
approximations to the finite sample distributions?; (3) For a time series with a
given magnitude for the slope change and level shift, which model should be used to
carry inference?

4.1. Finite sample versus asymptotics

In the first group of simulations (Figs. 2–6), we show that the limiting distributions
derived are indeed very good approximations to the finite sample distributions. To
that effect, we focus on the three estimates, T̂1 (break date), b̂b (slope change) and m̂b

(level shift). All simulation experiments involve 2000 replications and we present
results for the sample sizes T ¼ 200 and 800.

To assess the quality of the approximation, we compare the asymptotic and finite
sample probability density functions (pdf). To obtain the finite sample pdf, we use
the 2000 simulated statistics and construct an empirical pdf using a non-parametric
kernel density smoothing method.5The limiting pdf can be obtained directly in cases
5That is, for a given set of statistics, say fX igi¼1;...;N ; the pdf at value x is estimated by ~f ðxÞ ¼
ðN � hxÞ

�1PN
i¼1 Kððx � X iÞ=hxÞ where Kð�Þ is the kernel function and hx is the bandwidth. In our case,

N ¼ 2000 and we use the standard normal distribution as the kernel function. Since the estimates of the

break date are discrete integers, the cross-validation method for choosing the optimal bandwidth does not

work well in this case. As a rule of thumb, we simply let hx ¼ 0:3ŝx where ŝx is the estimated standard

deviation of a given sample of statistics fX igi¼1;...;N :
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Fig. 2. Finite sample versus asymptotic distributions in models I.a and II.a: m0
b ¼ 0: The graphs plot the empirical finite sample probability density functions

(pdf) (T ¼ 200 and 800) against the limiting pdf for the estimates of the break date, T̂1; and the slope change, b̂b; in Models I.a and II.a. The statistics are

normalized as follows: ðT̂1 � T0
1Þ=

ffiffiffiffi
T

p
for the break date and

ffiffiffiffi
T

p
ðb̂b � b0

bÞ=s for the slope break. The finite sample distributions are obtained using ut ¼
Pt

j¼1 ej

and ej � Nð0;s2Þ with 2000 replications. The parameters of the models are set to l0
¼ 0:5; m0

1 ¼ 1:72; m0
b ¼ 0; b0

1 ¼ 0:03; b0
b ¼ �0:02; s ¼ 0:01: For the

asymptotic distributions, Theorems 4.1 and 6.1(a) are used for Model I.a and Theorems 4.3 and 6.3(a) are used for Model II.a. When the limiting distributions

are non-Normal, we use 5000 simulated values to construct the pdf.
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Fig. 3. Finite sample versus asymptotic distributions in Models I.b and II.b: m0
b ¼ 0: The graphs plot the empirical finite sample probability density functions

(pdf) (T ¼ 200 and 800) against the limiting pdf for the estimates of the break date, T̂1; and the slope change, b̂b; in Models I.b and II.b. The statistics are

normalized as follows: ðT̂1 � T0
1Þ

ffiffiffiffi
T

p
for the break date in Model I.b but T̂1 � T0

1 in Model II.b; and T3=2ðb̂b � b0
bÞ=s for the slope break in both models. The

finite sample distributions are obtained using ut � Nð0; s2Þ with 2000 replications. The parameters of the models are set to l0
¼ 0:5; m0

1 ¼ 1:72; m0
b ¼ 0;

b0
1 ¼ 0:03; b0

b ¼ �0:02; s2 ¼ 0:1: For the asymptotic distributions, Theorems 4.2 and 6.2(a) are used for Model I.b and Theorems 4.4 and 6.4(a) are used for

Model II.b. When the limiting distributions are non-normal, we use 5000 simulated values to construct the pdf.
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Fig. 4. Unidentified intercept shift in Model II.a and II.b: m0
b ¼ 0: The graphs plot the empirical finite sample probability density functions (pdf) (T ¼ 200 and

800) against the limiting pdf for the estimates of the unidentified intercept shift, m̂b; in Models II.a and II.b. The finite sample distributions are obtained using

ut ¼
Pt

j¼1 ej and ej � Nð0; 0:012Þ with 2000 replications in Model II.a while they are obtained using ut � Nð0; 0:1Þ in Model II.b. The parameters of the models

are set to l0
¼ 0:5; m0

1 ¼ 1:72; m0
b ¼ 0; b0

1 ¼ 0:03; b0
b ¼ �0:02: Panel (a) plots ðm̂b � m0

bÞ=
ffiffiffiffi
T

p
in Model II.a for T ¼ 200 and 800; Panel (b) plots m̂b � m0

b in Model

II.b for T ¼ 200 and 800 as well as the limiting distribution m̂b � m0
b!

db0
bm1

IV: We use 5000 simulated values to construct the pdf of m1
IV according to Theorem

4.4.
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Fig. 5. Finite sample versus expanded asymptotic distributions in Model II.a: m0
ba0: In these graphs, we consider the effect of a non-zero intercept shift on the

empirical finite sample distributions of the estimated break date in Model II.a. And we want to examine how well the expanded asymptotic distributions

approximate the finite sample distributions in this case. The finite sample distributions are obtained using ut ¼
Pt

j¼1 ej and ej � Nð0;s2Þ with 2000 replications.

The parameters of the models are set to l0
¼ 0:5; m0

1 ¼ 1:72; b0
1 ¼ 0:03; b0

b ¼ �0:02; s ¼ 0:01: We use 5000 simulated values to construct the pdf of the expanded

asymptotic distribution of T̂1 according to Theorem 5. In Panel (a), we compare the empirical finite sample pdf for ðT̂1 � T0
1Þ=

ffiffiffiffi
T

p
against the pdf of the

asymptotic expansion in the case where T ¼ 200 and m0
b ¼ 0:05; in panel (b), we consider the case where T ¼ 800 and m0

b ¼ 0:05; in panel (c), we only examine

the pdfs of the asymptotic expansion for fixed sample size T ¼ 200 but varying m0
b; while in panel (d), we fix m0

b ¼ 0:05 but vary the sample size.
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(a)

(c)

(b)

Fig. 6. Finite sample versus asymptotic distributions in Model II.b: m0
ba0: In these graphs, we consider

the effect of a non-zero intercept shift on the empirical finite sample distributions of the estimated break

date in Model II.b. And we want to examine how well the asymptotic distributions approximate the finite

sample distributions in this case. The statistics for the break date is normalized as T̂1 � T0
1: The finite

sample distributions are obtained using ut � Nð0;s2Þ with 2000 replications. The parameters of the models

are set to l0
¼ 0:5; m0

1 ¼ 1:72; b0
1 ¼ 0:03; b0

b ¼ �0:02; s2 ¼ 0:1: We use 5000 simulated values to construct

the pdf of the asymptotic distribution of T̂1 according to Theorem 4.4. In Panel (a), where m0
b ¼ �0:1; we

compare the finite sample distributions for T ¼ 200 and 800 against the limiting distribution; in Panel (b),

we let m0
b ¼ 0:3; in Panel (c), we compare the limiting distributions for T̂1 � T0

1 with varying m0
b:

P. Perron, X. Zhu / Journal of Econometrics 129 (2005) 65–119 87
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where the limiting distribution is Normal. For the other cases, it can be obtained by
simulation and a similar kernel smoothing method (T̂1 in Models II.a and II.b, for
examples).

We first consider the case where the DGP is given by

yt ¼ m0
1 þ b0

1t þ b0
bBt þ ut; (5)

where ut ¼
Pt

j¼1 ej with ej � i:i:d: Nð0; s2Þ; i.e. the sequence ut is a random walk. We
recall that Bt ¼ 1ðt4T0

1Þðt � T0
1Þ with T0

1 ¼ l0T ; hence, the series yt is characterized
by a joined segmented trend with no level shift at the time of the break. We set the
various parameters at the following values: l0

¼ 0:5; m0
1 ¼ 1:72; b0

1 ¼ 0:03; b0
b ¼

�0:02 and s ¼ 0:01:
Fig. 2 presents the finite sample and asymptotic pdf of the normalized estimate of

the break date ðT̂1 � T0
1Þ=

ffiffiffiffi
T

p
and the normalized estimate of the slope changeffiffiffiffi

T
p

ðb̂b � b0
bÞ=s when these are obtained from the regression corresponding to model

I.a, i.e.

yt ¼ m̂1 þ b̂1t þ b̂bBt þ ût (6)

and from the regression corresponding to Model II.a, i.e.

yt ¼ m̂1 þ m̂bCt þ b̂1t þ b̂bBt þ ût; (7)

where we recall that Ct ¼ 1ðt4T1Þ: The results show that the asymptotic distribution
provides a good approximation when the regression from Model I.a is used (which is
well specified). When the regression from Model II.a is used (which incorporates an
unnecessary level shift regressor), the approximation for the estimate of the slope
change is still very good. However, for the estimate of the break date, the limiting
distribution exhibits a slight bimodal pattern which is not present in the finite sample
distribution. Nevertheless, for T ¼ 800; the approximation is quite satisfactory.

Fig. 3 presents a similar set of results but now the errors are Ið0Þ; i.e., the DGP is
still (5) but with ut � i:i:d: Nð0;s2Þ and s2 ¼ 0:1: The asymptotic distributions used
are those corresponding to Models I.b and II.b. When the estimates are constructed
from (6), see the top panel, the finite sample distributions of T1=2ðT̂1 � T0

1Þ and
T3=2ðb̂b � b0

bÞ=s are close to that of a Normal and indeed well approximated by the
asymptotic distributions for both estimates. The results, in the bottom panel are for
estimates constructed from the regression (7) using now ðT̂1 � T0

1Þ with no scaling.
Here, the results are strikingly different. For the estimate of the break date, the
distribution is clearly bimodal. The asymptotic approximation is good when T ¼

800 but less so when T ¼ 200 (though the same qualitative shape emerges). For the
slope change, the finite sample distribution is skewed to the right, but again when
T ¼ 800; it is close to the asymptotic distribution.

Fig. 4 presents results pertaining to the distribution of the estimate of the level
shift m̂b: The DGP is given by (5) where ut � Ið1Þ in the left panel, i.e. ut ¼

Pt
j¼1 ej

with ej � i:i:d: Nð0;s2Þ (corresponding to Model II.a) and ut � Ið0Þ in the right
panel, i.e. ut � i:i:d: Nð0; s2Þ (corresponding to Model II.b). The slope change is set
to b0

b ¼ �0:02; and s ¼ 0:01 when the errors are Ið1Þ and s ¼ 0:1 when the errors are
Ið0Þ (the value of the other parameters are as stated above). The regression used is
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(7). When the errors are Ið1Þ (left panel) we only plot the finite sample distributions
which show little changes between T ¼ 200 and 800. In the right panel, with Ið0Þ
errors, the distributions are clearly bimodal and the asymptotic distribution is a good
approximation. This bimodal feature parallels that found for the estimate of the
break, a feature we explain in more detail below.

Figs. 5 and 6 consider the case where the DGP specifies a non-zero level shift in,
i.e.

yt ¼ m0
1 þ m0

bCt þ b0
1t þ b0

bBt þ ut (8)

and the regression used is (7). In Fig. 5, the errors are Ið1Þ; i.e. ut ¼
Pt

j¼1 ej with
ej � i:i:d: Nð0;s2Þ (corresponding to Model II.a) with the slope change set to b0

b ¼

�0:02 and s ¼ 0:01: The aim is to assess the extent to which the asymptotic
expansion given by Theorem 5 provides a better (and adequate) approximation
to the finite sample distribution of the estimated break date compared to the
standard limiting distribution obtained in Theorem 4 (part 3). The base case uses the
value m0

b ¼ 0:05: Panels (a) and (b) show that this expansion provides a very
good approximation to the finite sample distribution for both T ¼ 200 and 800,
even though the distributions change substantially when changing the sample size.
Panel (d) compares the asymptotic expansion with the standard asymptotic
distribution (from Theorem 4.3). The results show that the latter provides a poor
approximation even when T ¼ 800: The results in Panels (a), (b) and (d) show how
the expansion of Theorem 5 provides a much better approximation than the
standard limiting distribution. Finally, panel (c) shows how, for a given sample size
set at T ¼ 200; the distribution provided by the expansion is substantially affected by
changes in the level shift coefficient m0

b: Since the standard asymptotic distribution is
not affected by this parameter, this is further evidence of the usefulness of the
asymptotic expansion.

Fig. 6 presents similar results for the case where the errors are Ið0Þ; i.e. ut � i:i:d:
Nð0;s2Þ (corresponding to Model II.b). Here, we compare the finite sample
distribution of the estimated break date with its asymptotic counterpart stated in
Theorem 4 (part 4). Panel (a) considers the value m0

b ¼ �0:1; in which case the results
show strong bimodality (the right mode being more important) and that the
asymptotic distribution is a good approximation. When m0

b ¼ 0:3; the asymptotic
approximation is even better and the left mode now clearly dominates. Panel (c)
shows the behavior of the asymptotic distribution for different values of the level
shift m0

b: What transpires from the results is that when jm0
bj is small, the distribution is

bimodal with two modes that are important (and more symmetric as m0
b gets closer

to 0). When m0
b increases (positive values), the left mode becomes more important

and is more centered around 0 as m0
b increases. The effect is opposite when m0

b

decreases (negative values), the right mode becoming more important. We provide
some explanations for this feature below. Note that when the level shift is very big (in
absolute value), the distribution is more centered around the true value (the second
mode becoming negligible). Hence, large level shifts help to better identify the true
break date.
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4.2. Model selection

A feature of importance that transpires from the theory and the simulations
reported above is that the inclusion of a level shift regressor has a substantial effect
on the properties of the estimate of the break date as well as other parameters. In the
next set of simulations, our aim is to see in which cases it is advisable to use a
regression with or without a level shift.

The data generating process is again given by (8) with the parameter values l0
¼

0:5; m0
1 ¼ 1:72; b0

1 ¼ 0:03; b0
b ¼ �0:02 and s ¼ 0:01: Table 1 considers the case with

Ið1Þ errors while Table 2 the case with Ið0Þ errors (in which case we use s2 ¼ 0:1). We
use 10 different values of m0

b ranging from �0:3 to 0:5: We report the mean squared
Table 1

Simulation analysis of mean squared errors using Model I.a and II.a

Sample size Intercept shift Model I.a Model II.a

T̂1 m̂1 b̂1 b̂b T̂1 m̂1 b̂1
m̂b b̂b

T ¼ 200 m0
b ¼ �0:3 136.8 12.2 13.1 32.3 0.0 13.8 11.5 25.5 22.7

m0
b ¼ �0:1 27.6 13.2 12.2 23.0 8.2 13.3 12.1 69.6 23.3

m0
b ¼ �0:05 13.0 13.4 12.0 22.7 10.8 13.3 12.2 69.9 23.3

m0
b ¼ �0:02 8.5 13.5 11.9 22.7 10.0 13.3 12.1 54.3 23.4

m0
b ¼ 0 7.7 13.6 11.8 22.7 9.1 13.4 12.0 44.3 23.3

m0
b ¼ 0:02 8.6 13.8 11.6 22.7 9.6 13.5 11.9 46.5 23.3

m0
b ¼ 0:05 13.4 14.0 11.4 22.7 10.8 13.7 11.7 62.7 23.4

m0
b ¼ 0:1 28.8 14.5 11.1 22.8 10.4 13.8 11.6 81.6 23.3

m0
b ¼ 0:3 145.5 24.0 16.9 30.3 0.0 13.8 11.5 25.5 22.7

m0
b ¼ 0:5 289.2 65.9 47.8 62.1 0.0 13.8 11.5 25.5 22.7

T ¼ 800 m0
b ¼ �0:3 222.9 48.3 3.1 5.9 20.5 49.6 3.0 198.0 5.8

m0
b ¼ �0:1 51.8 49.4 3.0 5.8 43.2 49.1 3.1 267.2 5.9

m0
b ¼ �0:05 34.1 49.7 3.0 5.8 38.5 49.3 3.1 210.7 5.9

m0
b ¼ �0:02 29.2 50.0 3.0 5.8 36.0 49.5 3.0 180.2 5.9

m0
b ¼ 0 28.2 50.1 3.0 5.8 35.0 49.6 3.0 169.6 5.9

m0
b ¼ 0:02 29.1 50.3 3.0 5.8 35.0 49.7 3.0 172.4 5.9

m0
b ¼ 0:05 34.1 50.4 3.0 5.8 37.0 49.9 3.0 191.8 5.9

m0
b ¼ 0:1 51.8 50.8 3.0 5.8 43.2 50.2 3.0 253.6 5.8

m0
b ¼ 0:3 224.3 52.7 2.9 5.8 21.4 50.4 3.0 233.1 5.8

m0
b ¼ 0:5 526.7 58.5 3.1 6.1 2.0 50.4 3.0 113.6 5.8

In this simulation study, we examine the model selection problem by considering the mean squared errors

(MSE) of different estimates in Model I.a and Model II.a for different intercept shifts. The underlying true

parameters used in simulation are: l0
¼ 0:5; m0

1 ¼ 1:72; b0
1 ¼ 0:03; b0

b ¼ �0:02; s ¼ 0:01 and replication

number 2000. Two sample sizes are considered, T ¼ 200 and 800. The data is generated by yt ¼

m0
1 þ b0

1t þ m0
bC0

t þ b0
bB0

t þ ut where ut ¼
Pt

s¼1 es and es � Nð0;s2Þ: For Model I.a, the estimates are

obtained from the least squares regression yt ¼ m̂1 þ b̂1t þ b̂bB̂t þ ût; and for Model II.a they are obtained

from the regression yt ¼ m̂1 þ b̂1t þ m̂bĈt þ b̂bB̂t þ ût: We normalize the MSE of b̂1 and b̂b by multiplying

107; and the MSE of m0
1 and m0

b by multiplying 104:
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Table 2

Simulation analysis of mean squared errors using Model I.b and II.b

Sample size Intercept shift Model I.b Model II.b

T̂1 m̂1 b̂1 b̂b T̂1 m̂1 b̂1
m̂b b̂b

T ¼ 200 m0
b ¼ �0:3 156.6 45.9 180.5 370.7 100.4 47.4 198.4 733.4 301.8

m0
b ¼ �0:1 44.7 43.1 149.0 243.5 171.9 50.5 225.7 896.2 374.5

m0
b ¼ �0:05 31.7 42.7 144.0 235.8 174.6 50.1 220.2 847.5 403.3

m0
b ¼ �0:02 27.4 42.3 138.2 233.8 171.3 49.3 209.5 819.8 409.3

m0
b ¼ 0 26.8 42.1 135.3 233.7 173.6 48.8 203.5 816.0 415.0

m0
b ¼ 0:02 28.7 41.7 132.5 234.1 172.9 48.1 195.7 807.7 414.6

m0
b ¼ 0:05 33.3 41.0 125.4 235.8 170.2 47.6 187.5 807.8 410.2

m0
b ¼ 0:1 48.3 39.8 114.0 241.9 170.9 46.4 172.6 855.3 389.4

m0
b ¼ 0:3 165.7 45.7 156.9 351.4 115.8 43.7 145.0 798.4 321.0

m0
b ¼ 0:5 319.6 84.6 459.3 737.6 19.7 42.3 132.4 203.5 301.0

T ¼ 800 m0
b ¼ �0:3 198.7 10.5 2.1 4.2 68.7 10.3 2.0 334.0 3.8

m0
b ¼ �0:1 28.9 10.2 1.9 3.6 152.4 10.6 2.2 658.6 4.0

m0
b ¼ �0:05 11.4 10.2 1.9 3.6 142.0 10.6 2.2 602.1 4.1

m0
b ¼ �0:02 6.4 10.2 1.9 3.6 136.5 10.6 2.1 575.4 4.1

m0
b ¼ 0 5.5 10.2 1.9 3.6 134.9 10.5 2.1 570.8 4.1

m0
b ¼ 0:02 6.4 10.2 1.9 3.6 132.7 10.5 2.1 560.9 4.1

m0
b ¼ 0:05 11.5 10.1 1.8 3.6 137.0 10.4 2.1 578.8 4.1

m0
b ¼ 0:1 29.4 10.0 1.8 3.6 145.2 10.4 2.1 617.3 4.1

m0
b ¼ 0:3 201.9 10.4 2.1 4.1 84.8 10.2 1.9 397.2 3.8

m0
b ¼ 0:5 504.2 15.6 5.0 7.1 7.8 10.1 1.9 53.1 3.8

In this simulation study, we examine the model selection problem by considering the mean squared errors

(MSE) of different estimates in Model I.b and Model II.b for different intercept shifts. The underlying true

parameters used in simulation are: l0
¼ 0:5; m0

1 ¼ 1:72; b0
1 ¼ 0:03; b0

b ¼ �0:02; s2 ¼ 0:1 and replication

number 2000. Two sample sizes are considered, T ¼ 200 and 800. The data is generated by yt ¼

m0
1 þ b0

1t þ m0
bC0

t þ b0
bB0

t þ ut where ut � Nð0; s2Þ: For Model I.b, the estimates are obtained from the least

squares regression yt ¼ m̂1 þ b̂1t þ b̂bB̂t þ ût; and for Model II.b they are obtained from the regression

yt ¼ m̂1 þ b̂1t þ m̂bĈt þ b̂bB̂t þ ût: We normalize the MSE of b̂1 and b̂b by multiplying 108; and the MSE of

m0
1 and m0

b by multiplying 104:
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errors (MSE) of the parameter estimates obtained from regression (6) corresponding
to Model I and regression (7) corresponding to Model II. What transpires from the
result is that when the true level shift is small, it is better to exclude the level shift
regressor. The MSE of the parameter estimates are then reduced. The reduction is
especially pronounced when the errors are Ið0Þ to the extent that one is better off
including the level shift regressor only for large values of m0

b; say greater than 0.3 in
absolute value. The practical implementation of the choice of an appropriate
model is an open question. The difficulty lies in the fact that with an estimated break
date, the estimate m̂b is not asymptotically identified. Hence, one cannot construct a
valid pre-test procedure or use the confidence interval of m̂b to map a confidence
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interval for the estimated break date. Visual inspection should be a useful starting
point.
5. Contamination and ‘‘feedback’’ effects between level shifts and estimated break

dates

Our theoretical and simulation results showed some surprising features related to
the effect of the inclusion of a level shift regressor (whether the true DGP specifies
such a level shift or not) on the estimate of the break date. In particular, including
such a level shift regressor reduces the rate of convergence of the estimated break
fraction when the errors are Ið0Þ and induces bimodality in the distribution of this
estimate (both in finite samples and asymptotically). In this section, we provide
intuitive explanations for these features.

Consider the simplified example depicted in Fig. 7. Suppose the break occurs at T0
1

and there is no level shift at the break date. In the estimation, we allow the possibility
of a level shift by incorporating the regressor Ct: Suppose that, by random chance,
the realization of yT0

1
�1 is the data point b instead of the data point a while all other

data points are on the trend lines. Then the estimated break date (obtained by
minimizing the sum of squared residuals) will be T0

1 � 1 instead of T0
1 and the

associated estimate of the intercept shift at the estimated break date is the distance
between a and b. Note that the same argument holds on the other side, i.e. with the
realization at the data point d instead of e and all other points on the trend lines, one
would estimate the break date at T0

1 þ 1: Hence, including a level shift regressor
induces a kind of ‘‘contamination effect’’ with respect to how precisely we estimate
the break date. In a sense, the point of intersection of the segmented trend becomes
random since the level shift regressor can accommodate random departures from the
Fig. 7. Identification: contamination and feedback effects.
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trend lines around the true break date. This effect remains even in the presence of
small level shifts, i.e. small enough relative to the magnitude of the random
deviations around the true trend lines. It also remains if the sample size is large and,
hence, induces a reduction in the rate of convergence of the estimated break fraction.
Moreover, using our simplified example, it is easy to see the following relation
between the estimate of the level shift, the slope change and the estimated break date,
namely that m̂b � m0

b ¼ b0
bðT̂1 � T0

1Þ: This is similar to the limiting result derived in
Theorem 6 (part 4.a). Hence the ‘‘contaminated’’ estimate T̂1 also influences the
estimate m̂b: We call this a ‘‘feedback’’ effect. This ‘‘feedback’’ effect makes m0

b a
parameter that cannot be identified.

Following the same line of argument, it is easy to understand why the distribution
of the estimate of the break date is bimodal when the true level shift is small. Indeed,
with purely random deviations around the true trend function, we have less chances
of estimating a break at the true value and more at either sides since the level shift
regressor can categorize random deviations as level shifts with an estimated break
date before or after the true one. By not incorporating a level shift regressor such a
‘‘contamination effect’’ disappears and it becomes easier to estimate the break date
more precisely, hence the faster rate of convergence. If the true level shift is positive
but not too large, the horizontal trend line in Fig. 7 shifts up so that there are less
chances that a level shift regressor can accommodate a random departure from the
trend line on the left side of the true break date. Hence, the left mode becomes less
important (and vice versa with a negative level shift). As the level shift becomes very
large, random deviations around the trend lines become negligible compared to the
magnitude of the level shift. Hence, the level shift regressor will actually then reflect
the true shift that occurs. The ‘‘contamination effect’’ disappears and the break date
becomes easier to identify. The situation then corresponds to Model III where the
rate of convergence is now faster.
6. Empirical applications

We now return to the (log) real per capita GDP series discussed in the
introduction. We present estimates and confidence intervals for the break dates (T1)
and the slope change (bb) for both cases where a level shift regressors is included or
not. To assess whether to use the results corresponding to Ið0Þ or Ið1Þ errors we
categorize the error structures for different countries according to the unit root tests
reported in Perron (1992). Hence, the noise component is treated as Ið0Þ for
Australia, Canada, Denmark, France, Germany, the United Kingdom and the
United States. It is treated as Ið1Þ for Italy, Norway and Sweden.

The estimation results are reported in Table 3. The results under the heading
‘‘Model I’’ are obtained using the regression yt ¼ m̂1 þ b̂1t þ b̂bBt þ ût and the
results under the heading ‘‘Model II’’ are obtained from the regression yt ¼

m̂1 þ m̂bCt þ b̂1t þ b̂bBt þ ût: The confidence intervals for the estimates from Model I
are simply computed from the normal asymptotic distribution stated in Theorem 4 (1
and 2). For Model II, we use 5000 replications (using the expansion of Theorem 5 for
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Table 3

Empirical results for the log real per capita GDP series (1870–1986)

Break date, T̂1

Country Error

structure

Model I Model II

Break date 90% Confidence

interval

Break date 90% Confidence

interval

Australia Ið0Þ 1934 1930 1938 1929 1926 1943

Canada 1936 1924 1948 1930 1928 1951

Denmark 1948 1942 1954 1939 1938 1949

France 1950 1945 1955 1943 1943 1948

Germany 1948 1943 1953 1945 1941 1964

UK 1934 1928 1940 1919 1919 1919

USA 1934 1893 1975 1940 1927 1952

Italy Ið1Þ 1947 1934 1960 1943 1932 1975

Norway 1925 1913 1937 1925 1914 1944

Sweden 1920 1896 1944 1916 1902 1959

Slope change, b̂b

Country Error

structure

Model I Model II

Slope

change

95% Confidence

interval

Slope

change

95% Confidence

interval

Australia Ið0Þ 0.0203 0.0174 0.0233 0.0199 0.0170 0.0229

Canada 0.0137 0.0076 0.0199 0.0133 0.0084 0.0181

Denmark 0.0146 0.0108 0.0184 0.0142 0.0118 0.0167

France 0.0290 0.0217 0.0362 0.0307 0.0264 0.0350

Germany 0.0271 0.0205 0.0337 0.0300 0.0230 0.0370

UK 0.0114 0.0089 0.0140 0.0082 0.0063 0.0102

USA 0.0026 �0.0013 0.0065 0.0001 � 0.0048 0.0050

Italy Ið1Þ 0.0323 0.0059 0.0587 0.0336 0.0127 0.0546

Norway 0.0192 0.0046 0.0337 0.0192 0.0046 0.0337

Sweden 0.0082 �0.0037 0.0201 0.0076 � 0.0071 0.0223

For Model I, the estimates are obtained from the regression yt ¼ m̂1 þ b̂1t þ b̂bB̂t þ ût while for Model II

they are obtained from the regression yt ¼ m̂1 þ b̂1t þ m̂bĈt þ b̂bB̂t þ ût: We categorize the error structures

as Ið0Þ or Ið1Þ according to the unit root tests reported in Perron (1992). Five thousand simulated values

are used to estimate the 90% confidence intervals for T̂1 in Models II.a and II.b.
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Ið1Þ errors and, using Theorem 4, part 4 assuming Normal errors for the case
with Ið0Þ errors). To estimate the parameter s2; we first calculated the fitted
residual ût using the OLS estimates of the break date and the other parameters.
If the error term is assumed to be Ið1Þ; then ŝ2

¼ T�1
PT

t¼2 ðDûtÞ
2
þ

2T�1
PT�1

j¼2 wðj;mÞ
PT

t¼jþ1 DûtDût�j where wðj;mÞ is the quadratic spectral kernel
and the bandwidth m is selected using Andrews (1991) method assuming an AR(1)
approximation for Dût: If the error term is assumed to be Ið0Þ; the same method is
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used to construct ŝ2 with ût instead of Dût: In the case of Model II.b, the limit
distribution also depends on the exact distribution of the errors ut; which accordingly
needs to be specified. To that effect, we assume that ut is a linear process that can be
approximated by an autoregressive model. We estimate an ARðpÞ with p selected
using the BIC (Bayesian information criterion). We assume Normality for the errors,
and given the estimates for the autoregressive parameters and the variance of the
residuals, we simulate a realization for the errors.

The results clearly show interesting patterns in accordance with our theoretical
results. Consider the case of Australia and Germany for which the estimated level
shift is small. Our theoretical results indicated that more precise estimates could be
obtained by not including the level shift regressor (i.e., using Model I). The
confidence intervals obtained for the break dates and slope changes clearly indicates
this. Consider the case of Australia. Using Model I, the break date is estimated at
1934 and the confidence interval is (1930, 1938) which is rather small. Using Model
II with a level shift the estimated break date is 1929 and the confidence interval is
now (1926, 1943), indeed much larger. The same holds for Germany.

The results also show that including the level shift regressor can lead to better
estimates when the true level shift is large. This is illustrated by looking at the results
for France (see Fig. 1 where the large level shift is evident). Using Model I, the break
date is estimated at 1950 and the confidence interval is (1945, 1955); using Model II
with a level shift the estimated break date is 1943 and the confidence interval is now
(1943, 1948) indeed smaller. The same feature holds for the United Kingdom in
which case the 90% confidence interval from Model II.b includes only the year 1919.

The effect of having Ið1Þ errors is also clear from the results. Indeed, whether using
Model I or II, the confidence interval for the break dates are quite large for Italy,
Norway and Sweden in accordance with our theoretical results. Finally, the results
for the United States show very wide confidence intervals. This should not be
surprising in view of the fact that Fig. 1 suggests that a slope change is likely not to
have occurred.
7. Conclusion

We considered asymptotic distributions in the context of a breaking trend function
with Ið1Þ or Ið0Þ errors. Our results show interesting qualitative differences from
those that are obtained in a stationary context. First, the rate of convergence and the
ensuing asymptotic distribution of the estimated break date can be quite different.
Second, we have uncovered how the inclusion or exclusion of a level shift regressor
can change the results in important ways. The presence of a level shift in the data
generating process also has important qualitative effects. We have shown that
our limiting results, in particular the limiting distributions derived, are good
approximations in finite samples and can accordingly be useful tools for inference.
When the standard asymptotic distribution was found to be a poor approximation,
we provided an asymptotic expansion that delivers very accurate results. The
usual caveat applies in that these conclusions are drawn from a limited set of
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simulation experiments, and it is always possible that they do generalize to cases not
considered.

Our analysis has implications for unit root tests that allow for a change in the
trend function at some unknown date (see Perron, 1997; Zivot and Andrews, 1992;
Vogelsang and Perron, 1998, among others). The standard practice is to choose the
break date by minimizing the unit root t-statistic. It is natural to consider choosing
the break date by minimizing the sum of squared residuals in the types of regressions
that we analyzed. It is possible then to use our asymptotic results to derive the
limiting distribution of the ensuing unit root tests. This is the object of ongoing
research.
Acknowledgements

Pierre Perron acknowledges financial support from the National Science
Foundation under Grant SES-0078492. We are especially grateful to Zhongjun Qu
for detailed comments on a previous draft as well as three referees.
Appendix A

In this appendix, we prove results model by model. Since we use almost identical
strategies to derive all the asymptotic properties, we only give detailed proofs for
Model I.a and we outline the main differences and derive the relevant results with
less details for the other models. In most cases, the argument of symmetry will apply.
So we simply assume, without loss of generality, that T̂1XT0

1 (or T1XT0
1 for any

generic potential break date T1). In cases where the symmetry argument does not
hold, we treat both cases (T̂1XT0

1 and T̂1oT0
1) separately. Throughout, we use ‘‘!’’

to denote the uniform convergence of a sequence of non-random elements, ‘‘!p’’
convergence in probability, ‘‘!d’’ convergence in distribution, and ‘‘)’’ weak
convergence in the space D½0; 1� under the Skorohod metric. Throughout, we let
l ¼ T1=T for some generic T1:

A.1. Model I.a—joint broken trend with Ið1Þ errors

Here, X ¼ ½i; t;B�0 with i ¼ ð1; . . . ; 1Þ0 and t ¼ ð1; . . . ;TÞ
0: Define ~ib ¼

ð~ibð1Þ; . . . :; ~ibðTÞÞ and ib ¼ ðibð1Þ; . . . :; ibðTÞÞ where,

if T14T0
1; ~ibðtÞ �

0 if 1ptpT0
1;

ðt � T0
1Þ=ðT1 � T0

1Þ if T0
1otoT1;

1 if T1ptpT ;

8><
>:

if T1 ¼ T0
1; ~ibðtÞ ¼ ibðtÞ �

0 if 1ptpT0
1;

1 if T0
1otpT :

(
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It follows that ðX T0
1
� X T1

Þg0 ¼ b0
bðT1 � T0

1Þ~ib: Note that ~ibð½Tr�Þ converges to a
continuous function f ~ib

ðrÞ over ½0; 1� such that

if l4l0; f ~ib
ðrÞ ¼

0 if 0prpl0;

ðr � l0
Þ=ðl� l0

Þ if l0orol;

1 if lprp1;

8><
>:

if l ¼ l0; f ~ib
ðrÞ ¼ f ib

�
0 if 0prol0;

1 if l0prp1:

(

A.1.1. Consistency

Proof of Lemma 1.a. Note that

ðXX Þ � g00ðX T0
1
� X T1

Þ
0
ðI � PT1

ÞðX T0
1
� X T1

Þg0 ¼ ðT1 � T0
1Þ

2
ðb0

bÞ
2~i0bðI � PT1

Þ~ib:

It suffices to show that ~i0bð1 � PT1
Þ~ib is OðTÞ uniformly over all generic T1 2

½pT ; ð1 � pÞT �: Note that ~i0bð1 � PT1
Þ~ib is the sum of squared residuals from a

regression of ~ib on ½i; t;B�: Denote it as SSRT : Now consider the continuous time
least-squares projection of the function f ~ib

ðrÞ on ½1; r; f BðrÞ�; where f BðrÞ ¼

1ðrXlÞðr � lÞ: Denote the resulting sum of squared residuals by SSR1 and the

estimated coefficients as d̂ ¼ ðâ; b̂; ĉÞ: From the definition of a Riemann integral,
T�1SSRT ! SSR1: Now

SSR1 ¼

Z 1

0

ðf tb
ðrÞ � â� b̂r � ĉf BðrÞÞ

2 dr:

If â ¼ b̂ ¼ 0; we obviously have SSR140: Otherwise, we have

SSR1X

Z minðl;l0Þ

0

ðf tb
ðrÞ � â� b̂r � ĉf BðrÞÞ

2 dr ¼

Z minðl;l0Þ

0

ðâþ b̂rÞ2 dr40:

The last inequality follows since both l and l0 are bounded away from zero. Hence,
SSR140 and SSRT ¼ OðTÞ: Also, SSR1o1: Now consider the term ðXUÞ: We
have

ðXUÞ ¼ g00ðX T0
1
� X T1

Þ
0
ðI � PT1

ÞU ¼ ðT1 � T0
1Þb

0
b~i

0
bðI � PT1

ÞU ;

hence it suffices to show that ~i0bðI � PT1
ÞU ¼ OpðT

3=2Þ over all T1 2 ½pT ; ð1 � pÞT �:
Define f n

~ib
ðrÞ as the projection residual of a least-squares regression of f ~ib

ðrÞ on a
constant, r and f BðrÞ: According to the properties of projections and the results for
the term ðXX Þ above,

R 1

0 f n

~ib
ðrÞdr ¼ 0 and

R 1

0 ðf
n

~ib
ðrÞÞ2 dr ¼ Oð1Þ uniformly over all l:

By the continuous mapping theorem, we have that uniformly over all l;

T�3=2~i0bðI � PT1
ÞU ) s

Z 1

0

f n

~ib
ðrÞW ðrÞdr



ARTICLE IN PRESS

P. Perron, X. Zhu / Journal of Econometrics 129 (2005) 65–11998
where W ðrÞ is a standard Weiner process. Define Fn
~ib
ðrÞ ¼

R r

0 f n

~ib
ðrÞds; thenZ 1

0

f n

~ib
ðrÞW ðrÞdr ¼

Z 1

0

W ðrÞdFn
~ib
ðrÞ

¼ ½W ðrÞFn

~ib
ðrÞ�10 �

Z 1

0

Fn

~ib
ðrÞdW ðrÞ ¼ �

Z 1

0

Fn

~ib
ðrÞdW ðrÞ:

It is easy to show that Eð
R 1

0
Fn

~ib
ðrÞdW ðrÞÞ ¼ 0 and Varð

R 1

0
Fn

~ib
ðrÞdW ðrÞÞ ¼R 1

0 ðF
n
~ib
ðrÞÞ2 dr ¼ Oð1Þ40 uniformly over l: Hence,

R 1

0 f n

~ib
ðrÞW ðrÞdr is Opð1Þ and

~i0bðI � PT1
ÞU ¼ OpðT

3=2Þ uniformly over l 2 ½p; 1 � p�:
Consider now the term ðUUÞ: Let DT ¼ diagðT ;T3;T3Þ: We have the decomposi-

tion,

U 0ðPT0
1
� PT1

ÞU

¼ U 0ðX T0
1
� X T1

ÞD
�1=2
T D

�1=2
T X 0

T0
1

X T0
1
D

�1=2
T

� ��1

D
�1=2
T X 0

T0
1

U

þ U 0X T1
D

�1=2
T ðD

�1=2
T X 0

T1
X T1

D
�1=2
T Þ

�1D
�1=2
T ðX 0

T1
X T1

� X 0

T0
1

X T0
1
ÞD

�1=2
T

�ðD
�1=2
T X 0

T0
1

X T0
1
D

�1=2
T Þ

�1D
�1=2
T X 0

T0
1

U

þ U 0X T1
D

�1=2
T ðD

�1=2
T X 0

T1
X T1

D
�1=2
T Þ

�1D
�1=2
T ðX T0

1
� X T1

Þ
0U :

We shall make use of the following results which are standard T�3=2
PT

t¼1

ut ) s
R 1

0 W ðrÞdr; T�5=2
PT

t¼1 tut ) s
R 1

0 rW ðrÞdr; T�5=2
PT

t¼T1þ1 ðt � T1Þut )

s
R 1

l ðr � lÞW ðrÞdr; T�3
PT

t¼T1þ1 ðt � T1Þ
2
!
R 1

l ðr � lÞ2 dr; T�3
PT

t¼T1þ1 ðt � T1Þt !R 1

l ðr � lÞr dr; and T�2
PT

t¼T1þ1 ðt � T1Þ !
R 1

l ðr � lÞdr: Letting BT1
be a vector of

dimension T with tth entry given by 1ðt4T1Þðt � T1Þ; it is easy to show that:
1.
 D
�1=2
T X 0

T1
X T1

D
�1=2
T and D

�1=2
T X 0

T0
1

X T0
1
D

�1=2
T are Oð1Þ uniformly in l:
2.
 D
�1=2
T X 0

T1
U and U 0X T0

1
D

�1=2
T are OpðTÞ uniformly in l:
3.
 For the term U 0ðX T0
1
� X T1

ÞD
�1=2
T ; note that the first two columns

in X T0
1
� X T1

are zero and the third column is BT0
1
� BT1

and, uni-
formly in l;

T�3=2U 0ðBT0
1
� BT1

Þ ¼ T�3=2
XT1

t¼T0
1

ðt � T0
1Þut þ T�3=2ðT1 � T0

1Þ
XT

t¼T1þ1

ut

¼ ðT1 � T0
1ÞOpð1Þ:
4.
 For the term D
�1=2
T ðX 0

T1
X T1

� X 0

T0
1

X T0
1
ÞD

�1=2
T ; all the elements of ðX 0

T1
X T1

�

X 0

T0
1

X T0
1
Þ are zero except those associated with BT1

or BT0
1
: For these
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nonzero terms,

B0

T0
1

BT0
1
� B0

T1
BT1

¼
XT1

t¼T0
1

ðt � T0
1Þ

2
þ

XT

t¼T1þ1

ðT1 � T0
1Þð2t � T1 � T0

1Þ

¼ jT1 � T0
1jOðT2Þ;

B0

T0
1

t� B0
T1
t ¼

XT1

t¼T0
1

ðt � T0
1Þt þ ðT1 � T0

1Þ
XT

t¼T1þ1

t ¼ jT1 � T0
1jOðT2Þ;

B0

T0
1

i� B0
T1
i ¼

XT1

t¼T0
1

ðt � T0
1Þ þ ðT1 � T0

1ÞðT � T1Þ ¼ jT1 � T0
1jOðTÞ:

Hence, D
�1=2
T ðX 0

T1
X T1

� X 0

T0
1

X T0
1
ÞD

�1=2
T ¼ jT1 � T0

1jOðT�1Þ:

The conclusion of the lemma follows from the above four results. We can now
prove Theorem 2 (Model 1.a) using a contradiction argument. Define

ðX̂ X̂ Þ � g00ðX T0
1
� X T̂1

Þ
0
ðI � PT̂1

ÞðX T0
1
� X T̂1

Þg0;

ðX̂ ÛÞ � g00ðX T0
1
� X T̂1

Þ
0
ðI � PT̂1

ÞU ;

ðÛÛÞ � U 0ðPT0
1
� PT̂1

ÞU :

Suppose that l̂Qpl
0; then from Lemma 1, ðX̂ X̂ Þ ¼ OðT3Þ; ðX̂ ÛÞ ¼ OpðT

5=2Þ and
ðÛÛÞ ¼ OpðTÞ: Therefore for large enough T, with some positive probability, the
positive term ðX̂ X̂ Þ dominates the others such that the inequality ðX̂ X̂ Þ þ 2ðX̂ ÛÞ þ

ðÛÛÞo0 cannot hold with probability 1. Since we know that the above inequality is
true for all T, we have a contradiction which implies that l̂!pl

0:

A.1.2. Rate of convergence

Proof of Theorem 3.1. Consider the set V ðeÞ ¼ fjT1 � T0
1joeTg: From the result of

Theorem 2, PrðT̂1 2 V ðeÞÞ ! 1 as T ! 1: Hence, we need only examine the
behavior of the sum of squared residuals SSRðT1Þ for those break dates T1 that
satisfy jT1 � T0

1joeT : Now consider the set

VCðeÞ ¼ fT1 : jT1 � T0
1joeT and jT1 � T0

1j4CT1=2g:

Note that V CðeÞ � V ðeÞ: Since SSRðT̂1ÞpSSRðT0
1Þ with probability 1, it is enough to

show that for each Z; there exists a number C40 such that

Pr min
T12VC ðeÞ

fSðT1Þ � SðT0
1Þgo0

� �
oZ: (A.1)

Establishing (A.1) implies that a minimum cannot be achieved over V CðeÞ and that
jT1 � T0

1jpCT1=2 must hold with an arbitrarily large probability. Now (A.1) is
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equivalent to

Pr min
T12VC ðeÞ

f½ðXX Þ � 2ðXUÞ þ ðUUÞ�go0

� �
oZ:

We can normalize these three terms by dividing them by jT1 � T0
1jT

3=2: Using
Lemma 1 and the fact that on the set V CðeÞ we have jT1 � T0

1joeT and jT1 �

T0
1j4CT1=2; we have

ðXX Þ

jT1 � T0
1jT

3=2
4aC þ opð1Þ;

ðXUÞ

jT1 � T0
1jT

3=2
¼ Opð1Þ;

ðUUÞ

jT1 � T0
1jT

3=2
¼ opð1Þ;

where a is a positive constant. Hence, given any small e; we can choose a C large
enough so that (A.1) is satisfied.

A.1.3. Limiting distribution of the estimated break

Proof of Theorem 4.1. Define the set DðCÞ ¼ fT1 : jT1 � T0
1jo

ffiffiffiffi
T

p
Cg for positive

number C, and mT ¼ jT1 � T0
1j=

ffiffiffiffi
T

p
: To derive the limiting distribution, we analyze

arg min
T12DðCÞ

½SSRðT1Þ � SSRðT0Þ�=T2:

For T1 2 DðCÞ; we have jT1 � T0
1j ¼ OðT1=2Þ: Hence, ðXX Þ ¼ jT1 � T0

1j
2OðTÞ ¼

OðT2Þ; ðXUÞ ¼ jT1 � T0
1jOpðT

3=2Þ ¼ OpðT
2Þ and ðUUÞ ¼ jT1 � T0

1jOpðTÞ ¼

OpðT
3=2Þ: Then,

arg min
T1

½SSRðT1Þ � SSRðT0Þ�=T2

¼ arg min
T1

½ðXX Þ þ ðXUÞ þ ðUUÞ�=T2

¼ arg min
T1

½ðXX Þ=T2 þ ðXUÞ=T2 þ opð1Þ�

and we only need to consider the first two terms. Note that on the set DðCÞ; jl�
l0
j ¼ OðT�1=2Þ: Using this fact, we can derive the following results that will be used

subsequently:

D
�1=2
T X 0

T1
X T1

D
�1=2
T ¼

1 1
2

ð1�l0Þ2

2

1
2

1
3

ð1�l0Þ2ðl0þ2Þ
6

ð1�l0Þ2

2
ð1�l0Þ2ðl0þ2Þ

6
ð1�l0Þ3

3

2
6664

3
7775þ oð1Þ

and the inverse is ðD
�1=2
T X 0

T1
X T1

D
�1=2
T Þ

�1
¼ S�1

a þ oð1Þ with

S�1
a ¼

ðl0þ3Þ

l0 �
3ðl0þ1Þ

ðl0Þ2
3

ðl0Þ2ð1�l0Þ

�
3ðl0þ1Þ

ðl0Þ2
3ð3l0þ1Þ

ðl0Þ3
�

3ð2l0þ1Þ

ðl0Þ3ð1�l0Þ

3

ðl0Þ2ð1�l0Þ
�

3ð2l0þ1Þ

ðl0Þ3ð1�l0Þ

3

ðl0Þ3ð1�l0Þ3

2
66664

3
77775:
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Also,

T�1ðBT0
1
� BT1

Þ
0X T1

D
�1=2
T ¼ 1 � l0 1�ðl0Þ2

2
ð1�l0Þ2

2

h i
mT þ oð1Þ:

Using the results above,

T�1 BT0
1
� BT1

� �0
X T1

D
�1=2
T D

�1=2
T X 0

T1
X T1

D
�1=2
T

� ��1

¼ � 1�l0

2
3ð1�l0Þ

2l0
3ð2l0�1Þ

2l0ð1�l0Þ

h i
mT þ oð1Þ: ðA:2Þ

Hence,

T�2ðBT0
1
� BT1

Þ
0X T1

ðX 0
T1

X T1
Þ
�1X 0

T1
ðBT0

1
� BT1

Þ ¼
ð1 � l0

Þð4 � l0
Þ

4

 !
mT þ oð1Þ

(A.3)

and

T�2ðBT0
1
� BT1

Þ
0
ðBT0

1
� BT1

Þ ¼ ð1 � l0
ÞmT þ oð1Þ: (A.4)

Using (A.3) and (A.4), we obtain

T�2ðBT0
1
� BT1

Þ
0
ðI � PT1

ÞðBT0
1
� BT1

Þ ¼
ð1 � l0

Þl0

4

 !
mT þ oð1Þ:

Now

T�2ðBT0
1
� BT1

Þ
0U ¼ T�2

XT1

t¼T0
1
þ1

ðt � T0
1Þut þ T�2

XT

t¼T1þ1

ðT1 � T0
1Þut

¼ T�2
XT

t¼T0
1
þ1

ðT1 � T0
1Þut þ opð1Þ

¼ mT T�3=2
XT

t¼T0
1
þ1

ut þ opð1Þ ðA:5Þ

and

T�1D
�1=2
T X 0

T1
U

¼ T�3=2
PT
t¼1

ut T�5=2
PT
t¼1

tut T�5=2
PT

t¼T1þ1

ðt � T1Þut

" #0

¼ T�3=2
PT
t¼1

ut T�5=2
PT
t¼1

tut T�5=2
PT

t¼T0
1
þ1

ðt � T0
1Þut þ opð1Þ

" #0
: ðA:6Þ
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From (A.2), (A.5) and (A.6)

T�2g00ðX T0
1
� X T1

Þ
0
ðI � PT1

ÞU

¼ T�3=2
XT

t¼T0
1
þ1

ut þ
1 � l0

2

PT
t¼1 ut

T3=2
�

3ð1 � l0
Þ

2l0

PT
t¼1 tut

T5=2

8<
:
�

3ð2l0
� 1Þ

2l0
ð1 � l0

Þ

PT
t¼T0

1
þ1 ðt � T0

1Þut

T5=2

9=
;b0

bmT þ opð1Þ

¼ s
Z 1

l0
W ðrÞdr þ

1 � l0

2

Z 1

0

W ðrÞdr �
3ð1 � l0

Þ

2l0

Z 1

0

rW ðrÞdr

�

�
3ð2l0

� 1Þ

2l0
ð1 � l0

Þ

Z 1

l0
ðr � l0

ÞW ðrÞdr

'
b0

bmT þ opð1Þ

� sb0
bmT

Z 1

l0
W nðrÞdr þ opð1Þ;

where W nðrÞ is the residuals function from a continuous time least-squares regression
of W ðrÞ on f1; r; 1ðr4l0

Þðr � l0
Þg: Given the above results

mn

T ¼ arg min
mT2DðCÞ

ðXX Þ=T2 þ ðXUÞ=T2 þ opð1Þ
( )

¼ arg min
mT2DðCÞ

m2
T ðb

0
bÞ

2 l0
ð1 � l0

Þ

4
þ 2smT ðb

0
bÞ

Z 1

l0
W nðrÞdr

 !
þ opð1Þ

by the continuous mapping theorem. Note that the objective function does not
change if T1 � T0

1o0: Hence,

mn

T ¼
T̂1 � T0

1ffiffiffiffi
T

p ) �
4s
R 1

l0 W nðrÞdr

l0
ð1 � l0

Þb0
b

:

Now since mT 2 DðCÞ implies that l is in the set fjl� l0joCT�1=2g and l0 2

½p; 1 � p�; if we consider the minimization over ½p; 1 � p�; the result remains valid.

Now,
R 1

l0 W nðrÞdr is Normally distributed with mean 0 and tedious algebra shows
that its variance is ðl0

Þ
2
ð1 � l0

Þ
2=120: Hence, we have the equivalent result

ffiffiffiffi
T

p
ðl̂�

l0Þ!
dNð0; 2s2=½15ðb0

bÞ
2
�Þ:

A.1.4. The other parameters

Proof of Theorem 6.1. We have

ĝ ¼ ðX 0

T̂1
X T̂1

Þ
�1X 0

T̂1
Y ¼ ðX 0

T̂1
X T̂1

Þ
�1X 0

T̂1
X T0

1
g0 þ ðX 0

T̂1
X T̂1

Þ
�1X 0

T̂1
U

¼ g0 þ D
�1=2
T ðD

�1=2
T X 0

T̂1
X T̂1

D
�1=2
T Þ

�1D
�1=2
T X 0

T̂1
ðX T0

1
� X T̂1

Þg0

þ D
�1=2
T ðD

�1=2
T X 0

T̂1
X T̂1

D
�1=2
T Þ

�1D
�1=2
T X 0

T̂1
U :
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Hence,

T�1D
1=2
T ĝ� g0
� �

¼ D
�1=2
T X 0

T̂1
X T̂1

D
�1=2
T

� ��1

½T�1D
�1=2
T X 0

T̂1
ðX T0

1
� X T̂1

Þg0

þ T�1D
�1=2
T X 0

T̂1
U �:

Note that

T�1D
�1=2
T X 0

T̂1
ðX T0

1
� X T̂1

Þg0 þ T�1D
�1=2
T X 0

T̂1
U

¼ b0
b

T̂1 � T0
1ffiffiffiffi

T
p D

�1=2
T X 0

T̂1
îbT�1=2 þ T�1D

�1=2
T X 0

T̂1
U

) �s
Z 1

l0
W nðrÞdr

4

l0

2ð1þl0Þ

l0

2ð1�l0Þ

l0

2
66664

3
77775þ s

R 1

0 W ðrÞdrR 1

0 rW ðrÞdrR 1

l0 ðr � l0
ÞW ðrÞdr

2
6664

3
7775:

Tedious calculation shows that this limiting functional is equal to

�s

R l0

0
1

ðl0Þ2
½3ð1 � l0

Þr þ l0
�ðr � l0

ÞdW ðrÞ þ
R 1

l0
3

1�l0 ðr � 1Þðr � l0
ÞdW ðrÞR l0

0
1

2ðl0Þ2
½ð3 � 2ðl0

Þ
2
Þr þ l0

�ðr � l0
ÞdW ðrÞ þ

R 1

l0
l0þ2

1�l0 ðr � 1Þðr � l0
ÞdW ðrÞR l0

0
ð1�l0Þ2

2ðl0Þ2
½3r þ l0

�ðr � l0
ÞdW ðrÞ þ

R 1

l0 2ðr � 1Þðr � l0
ÞdW ðrÞ

2
66664

3
77775:

We can show that it has a multivariate Normal distribution Nð0;SbÞ with

Sb ¼ s2

�6ðl0Þ2þ7l0þ9
30

�10ðl0Þ3þ3ðl0Þ2þ8l0þ24
120

ð1�l0Þ2ð�9ðl0Þ2þ20l0þ24Þ
120

�10ðl0Þ3þ3ðl0Þ2þ8l0þ24
120

�2ðl0Þ4�ðl0Þ3þ2ðl0Þ2þl0þ8
60

ð1�l0Þ2ð�3ðl0Þ3þ10l0þ16Þ
120

ð1�l0Þ2ð�9ðl0Þ2þ20l0þ24Þ
120

ð1�l0Þ2ð�3ðl0Þ3þ10l0þ16Þ
120

ð1�l0Þ4ð8þ9l0Þ

60

2
6664

3
7775:

Since ðD
�1=2
T X 0

T̂1
X T̂1

D
�1=2
T Þ

�1
!pS�1

a ; we have T�1D
1=2
T ðĝ� g0Þ!dNð0;S�1

a SbS�1
a Þ

with S�1
a SbS�1

a as defined in Theorem 6.1.a. Suppose now that the true break date
T0

1 is known (in which case the least-squares estimate is denoted ḡ). In this case, we
have

ḡ ¼ g0 þ D
�1=2
T D

�1=2
T X 0

T0
1

X T0
1
D

�1=2
T

� ��1

D
�1=2
T X 0

T0
1

U :

Since

T�1D
�1=2
T X 0

T0
1

U )

R 1

0 W ðrÞdrR 1

0
rW ðrÞdrR 1

l0ðr � l0
ÞW ðrÞdr

2
664

3
775
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which has a Normal distribution with variance-covariance matrix Sc defined by

1
3

5
24

ð5þ2l0�ðl0Þ2Þð1�l0Þ2

24

5
24

2
15

1
12
ðl0

Þ
3
� 1

120
ðl0

Þ
5
� 5

24
l0

þ 2
15

ð5þ2l0�ðl0Þ2Þð1�l0Þ2

24
1
12
ðl0

Þ
3
� 1

120
ðl0

Þ
5
� 5

24
l0

þ 2
15

ð 7
60
l0

þ 2
15
Þð1 � l0

Þ
4

2
664

3
775:

The limiting distribution of T�1D
1=2
T ðḡ� g0Þ is then Nð0;S�1

a ScS�1
a Þ with S�1

a ScS�1
a

as defined in Theorem 6.1.b.
A.2. Model I.b—joint broken trend with Ið0Þ errors

A.2.1. Asymptotics for break date

The proof for consistency and rate of convergence is similar to Model I.a, so we
omit a detailed proof and focus on the limiting distribution. Since the ðXX Þ term is
same as Model I.a, we only need to consider the terms ðXUÞ and ðUUÞ: We have
T�1=2~i0bU )

R 1

l0 dW ðrÞ;

T�1=2~i0bX T1
D

�1=2
T ðD

�1=2
T X 0

T1
X T1

D
�1=2
T Þ

�1
! p � 1�l0

2
3ð1�l0Þ

2l0
3ð2l0�1Þ

2l0ð1�l0Þ

h i

U 0X T1
D

�1=2
T )

R 1

0 dW ðrÞ
R 1

0 r dW ðrÞ
R 1

l0 r � l0
� �

dW ðrÞ

h i
:

Now define mT ¼
ffiffiffiffi
T

p
ðT1 � T0

1Þ; then

ðXUÞ ¼ b0
bðBT0

1
� BT1

Þ
0
ðI � PT1

ÞU ¼ T�1=2b0
bmT ~i0bðI � PT1

ÞU

¼ b0
bmTs

Z 1

l0
dW ðrÞ � l0�1

2
3ð1�l0Þ

2l0
3ð2l0�1Þ

2l0ð1�l0Þ

h i
R 1

0 dW ðrÞR 1

0 r dW ðrÞR 1

l0ðr � l0
ÞdW ðrÞ

2
6664

3
7775

2
6664

3
7775

þ opð1Þ

¼ b0
bmTs

Z l0

0

l0
� ðl0

Þ
2
� 3r þ 3rl0

2l0
dW ðrÞ þ

Z 1

l0
l0 2 þ l0

� 3r

2ð1 � l0
Þ

dW ðrÞ

" #

þ opð1Þ:

Hence, ðXUÞ � b0
bmTszþ opð1Þ where z � Nð0; l0

ð1 � l0
Þ=4Þ: Consider now the

term ðUUÞ;

ðUUÞ ¼ U 0 X T0
1
� X T1

� �
D

�1=2
T D

�1=2
T X 0

T0
1

X T0
1
D

�1=2
T

� ��1

D
�1=2
T X 0

T0
1

U

þ U 0X T1
D

�1=2
T D

�1=2
T X 0

T1
X T1

D
�1=2
T

� ��1

D
�1=2
T X 0

T1
X T1

� X 0

T0
1

X T0
1

� �
D

�1=2
T
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� D
�1=2
T X 0

T0
1

X T0
1
D

�1=2
T

� ��1

D
�1=2
T X 0

T0
1

U

þ U 0X T1
D

�1=2
T D

�1=2
T X 0

T1
X T1

D
�1=2
T

� ��1

D
�1=2
T ðX T0

1
� X T1

Þ
0U :

Since U is Ið0Þ; U 0ðX T0
1
� X T1

ÞD
�1=2
T ¼ jT1 � T0

1jOpðT
�1Þ; D

�1=2
T X 0

T0
1

U ¼ Opð1Þ;

U 0X T1
D

�1=2
T ¼ Opð1Þ; and as in Model I.a, D

�1=2
T X 0

T0
1

X T0
1
D

�1=2
T ¼ Oð1Þ and

D
�1=2
T ðX 0

T1
X T1

� X 0

T0
1

X T0
1
ÞD

�1=2
T ¼ jT1 � T0

1jOðT�1Þ: Given these results, we have

ðUUÞ ¼ jT1 � T0
1jOpðT

�1Þ which is dominated by ðXUÞ asymptotically. Using the

same arguments as for Model I.a, we then obtain

T3=2ðl̂� l0
Þ!d �4sz

b0
bl

0
ð1 � l0

Þ
¼dN 0;

4s2

l0 1 � l0
� �

b0
b

� �2

 !
:

A.2.2. The other parameters

As in Model I.a, we have

D
1=2
T ðĝ� g0Þ ¼ ðD

�1=2
T X T̂1

X 0

T̂1
X̂D

�1=2
T Þ

�1
½D

�1=2
T X 0

T̂1
ðX T0

1
� X T̂1

Þg0 þ D
�1=2
T X 0

T̂1
U �:

Note that

D
�1=2
T X 0

T̂1
ðX T0

1
� X T̂1

Þg0 þ D
�1=2
T X 0

T̂1
U

¼ b0
b

ffiffiffiffi
T

p
ðT̂1 � T0

1ÞD
�1=2
T X 0

T̂1
~ibT�1=2 þ D

�1=2
T X 0

T̂1
U

)
�4sz

l0 1 � l0
� �

1 � l0

1�ðl0Þ2

2

ð1�l0Þ2

2

2
6664

3
7775þ s

R 1

0 dW ðrÞR 1

0 r dW ðrÞR 1

l0ðr � l0
ÞdW ðrÞ

2
6664

3
7775

¼ s
Z l0

0

�2l0þ3ðl0Þ2þ6r�6rl0

ðl0Þ2

ðl0Þ3�2rðl0Þ2�l0þ3r

ðl0Þ2

ðl0
Þðl0

� 1Þ þ 3rð1 � l0
Þ 1�l0

ðl0Þ2

2
666664

3
777775dW ðrÞ

þ s
Z 1

l0

3 1þl0�2r

�1þl0

ðl0Þ2þ3l0�2rl0�4rþ2

�1þl0

�2 � 2l0
þ 4r

2
66664

3
77775dW ðrÞ:
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Tedious calculations show that this limiting functional has a Nð0;s2SdÞ distribution
with

Sd ¼

4�3l0

l0
4�4ðl0Þ2þl0

2l0
4�7l0þ2ðl0Þ2þðl0Þ3

2l0

4�4ðl0Þ2þl0

2l0
3�3ðl0Þ2�3ðl0Þ3þ4l0

3l0
�9ðl0Þ2þ6ðl0Þ3þðl0Þ4þ6�4l0

6l0

4�7l0þ2ðl0Þ2þðl0Þ3

2l0
�9ðl0Þ2þ6ðl0Þ3þðl0Þ4þ6�4l0

6l0
3�8l0þ6ðl0Þ2�ðl0Þ4

3l0

2
6664

3
7775:

Hence, the limiting distribution of D
1=2
T ðĝ� g0Þ is N 0; s2S�1

a SdS�1
a

� �
with

S�1
a SdS�1

a as stated in Theorem 6.2.a. When the break date is assumed known,
we have

D
1=2
T ðḡ� g0Þ ¼ ðD

�1=2
T X 0

T0
1

X T0
1
D

�1=2
T Þ

�1D
�1=2
T X 0

T0
1

U ;

where

U 0X 0

T0
1

D
�1=2
T ) s

R 1

0 dW ðrÞ
R 1

0 r dW ðrÞ
R 1

l0 r � l0
� �

dW ðrÞ

h i

which is Normally distributed with mean zero and variance s2Se with

Se ¼

1 1
2

1
2
� l0

þ 1
2
ðl0

Þ
2

1
2

1
3

1
3
� 1

2
l0

þ 1
6
ðl0

Þ
3

1
2
� l0

þ 1
2
ðl0

Þ
2 1

3
� 1

2
l0

þ 1
6
ðl0

Þ
3 1

3
� l0

þ ðl0
Þ
2
� 1

3
ðl0

Þ
3

2
664

3
775:

Hence D
1=2
T ðḡ� g0Þ!dN 0; s2S�1

a SeS�1
a

� �
as defined in Theorem 6.2.b.

A.3. Model II.a: local disjoint broken trend with Ið1Þ errors

A.3.1. Asymptotics for break date

The proofs for consistency and the rate of convergence are similar to those of
Model I.a. Hence, we again concentrate on the limiting distribution. In the
following, we therefore work on the set DðCÞ ¼ fT1 : jT1 � T0

1jo
ffiffiffiffi
T

p
Cg for positive

number C, which implies that l ¼ T1=T is such that jl� l0
j ¼ OðT�1=2Þ: Note that

X ¼ ½i; t;C;B� and ðX T0
1
� X T1

Þg0aðBT0
1
� BT1

Þb0
b in this type of model, hence we

need to apply a new transformation on ðXX Þ and (XUÞ: Since ðT1 � T0
1ÞðI �

PT1
ÞCT1

¼ 0; we have

ðI � PT1
ÞðX T0

1
� X T1

Þg0

¼ ðI � PT1
Þ½ðCT0

1
� CT1

Þm0
b þ ðBT0

1
� BT1

� ðT1 � T0
1ÞCT1

Þb0
b�:
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When T14T0
1;

CT0
1
� CT1

¼ 1 if T0
1 þ 1ptpT1 and 0 otherwise;

BT0
1
� BT1

� T1 � T0
1

� �
CT1

¼ t � T0
1 if T0

1 þ 1ptpT1 and 0 otherwise;

while when T1oT0
1;

CT0
1
� CT1

¼ �1 if T1 þ 1ptpT0
1 and 0 otherwise;

BT0
1
� BT1

� ðT1 � T0
1ÞCT1

¼ �ðt � T0
1Þ if T1 þ 1ptpT0

1 and 0 otherwise:

We shall use the following notation. For T0
14T1;

g1ðT1 � T0
1Þ �

XT0
1

t¼T1þ1

m0
b þ b0

bðt � T0
1Þ

( )
;

h1ðT1 � T0
1Þ �

XT0
1

t¼T1þ1

m0
b þ b0

bðt � T0
1Þ

( )2
and for T0

1oT1;

g2ðT1 � T0
1Þ �

XT1

t¼T0
1
þ1

m0
b þ b0

b t � T0
1

� �( )
;

h2ðT1 � T0
1Þ �

XT1

t¼T0
1
þ1

m0
b þ b0

b t � T0
1

� �( )2
:

Let n ¼ T1 � T0
1 and k ¼ t � T0

1; then

For no0; g1ðnÞ �
X0

k¼nþ1

½m0
b þ b0

bk�; h1ðnÞ �
X0

k¼nþ1

½m0
b þ b0

bk�2:

For n40; g2ðnÞ �
Xn

k¼1

½m0
b þ b0

bk�; h2ðnÞ �
Xn

k¼1

½m0
b þ b0

bk�2:

Henceforth, we suppress the argument T1 � T0
1 and simply use the

short-hand notation g1; g2; h1 and h2: Let DT ¼ diag T ;T3;T ;T3
� �

; we can show
that if T14T0

1;

g00ðX T0
1
� X T1

Þ
0
ðI � PT1

ÞðX T0
1
� X T1

Þg0

¼ ½ðCT0
1
� CT1

Þm0
b þ ðBT0

1
� BT1

� T1 � T0
1

� �
CT1

Þb0
b�
0

�ðI � PT1
Þ½ðCT0

1
� CT1

Þm0
b

þ ðBT0
1
� BT1

� ðT1 � T0
1ÞCT1

Þb0
b�
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¼
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1
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1Þ�
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�
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1Þ�xðT1Þ

0
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D
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T Þ
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�D
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T
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1
þ1

xðT1Þt½m
0
b þ b0

bðt � T0
1Þ�:

Note that
PT1

t¼T0
1
þ1

½m0
b þ b0

bðt � T0
1Þ�

2 ¼ h2 andXT1

t¼T0
1
þ1

½m0
b þ b0

bðt � T0
1Þ�xðT1Þ

0
tD

�1=2
T

¼ T�1=2
XT1

t¼T0
1
þ1

½m0
b þ b0

bðt � T0
1Þ�½ 1 t=T 0 0 �

¼ T�1=2g2 1 T0
1=T 0 0

( )
þ T�1=2

XT1�T0
1

k¼1

m0
b þ b0

bk
( )

0 k=T 0 0
( )

pT�1=2jg2j 1 T0
1=T 0 0

( )
þ jg2jT

�1=2jT1 � T0
1j=T ¼ Opðjg2jT

�1=2Þ:

The last step is due to the fact that jT1 � T0
1j=T!p0: Based on this result and the

fact that D
�1=2
T X 0

T1
X T1

D
�1=2
T

� ��1

¼ Opð1Þ; g00ðX T0
1
� X T1

Þ
0PT1

ðX T0
1
� X T1

Þg0 ¼

Opðg
2
2T�1Þ ¼ opðh2Þ because jl� l0

j ¼ OðT�1=2Þ: Therefore, we have ðXX Þ ¼ h2 þ

opðh2Þ for T14T0
1 and we can similarly show that ðXX Þ ¼ h1 þ opðh1Þ for T1oT0

1:
This implies that ðXX Þ ¼ jT1 � T0

1j
3Oð1Þ if m0

b is fixed, which proves Lemma 1.3.

Next we consider ðXUÞ treating the two cases T0
14T1 and T0

1oT1: We start with

the following results: (1) D
�1=2
T X 0

T1
X T1

D
�1=2
T

� �
¼ O1 þ oð1Þ where

O1 ¼

4

l0 � 6

ðl0Þ2
2

l0
6

ðl0Þ2

� 6

ðl0Þ2
12

ðl0Þ3
� 6

ðl0Þ2
� 12

ðl0Þ3

2

l0 � 6

ðl0Þ2
4

l0ð1�l0Þ
6 1�2l0

ðl0Þ2ð1�l0Þ2

6

ðl0Þ2
� 12

ðl0Þ3
6 1�2l0

ðl0Þ2ð1�l0Þ2
12 3ðl0Þ2�3l0þ1

ðl0Þ3ð1�l0Þ3

2
66666664

3
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(A.7)

and

O�1
1 ¼

1 1
2

1 � l0 ð1�l0Þ2

2

1
2

1
3

1�ðl0Þ2

2
ð1�l0Þ2ðl0þ2Þ

6

1 � l0 1�ðl0Þ2

2 1 � l0 ð1�l0Þ2

2

ð1�l0Þ2

2
ð1�l0Þ2ðl0þ2Þ

6
ð1�l0Þ2

2
ð1�l0Þ3

3

2
6666664

3
7777775
:
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(2) T�1D
�1=2
T X 0

T1
U ) sx1 where

x1 �

R 1

0 W ðrÞdrR 1

0 rW ðrÞdrR 1

l0 W ðrÞdrR 1

l0 ðr � l0
ÞW ðrÞdr

2
666664

3
777775 ¼

R 1

0 ð1 � rÞdW ðrÞR 1

0
1�r2

2
dW ðrÞR l0

0 ð1 � l0
ÞdW ðrÞ þ

R 1

l0 ð1 � rÞdW ðrÞR l0

0
ð1�l0Þ2

2 dW ðrÞ þ
R 1

l0
ð1�l0Þ2�ðr�l0Þ2

2 dW ðrÞ

2
6666664

3
7777775
:

(A.8)

(3) When T0
1oT1; define ut ¼ uT0

1
þ vk; we have

T�1=2
XT1

t¼T0
1
þ1

½m0
b þ b0

bðt � T0
1Þ�ut ¼ T�1=2

XT1�T0
1

k¼1

ðm0
b þ b0

bkÞðuT0
1
þ vkÞ

¼ T�1=2g2uT0
1
þ T�1=2

XT1�T0
1

k¼1

ðm0
b þ b0

bkÞvk

¼ sW ðl0
Þg2 þ opðg2Þ:

(4) When T0
1oT1;

T�1=2
XT1

t¼T0
1
þ1

m0
b þ b0

bðt � T0
1

( �
xðT1Þ

0
tD

�1=2
T

¼ T�1g2½ 1 l0 0 0 � þ opðg2=TÞ:

Using the above results, we have when T0
1oT1;

g00ðX T0
1
� X T1

Þ
0
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ÞU

¼
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1
þ1
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b þ b0
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�
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1
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0
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� D
�1=2
T X 0

T1
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D
�1=2
T

� ��1

D
�1=2
T X 0

T1
U

¼ T1=2g2s W ðl0
Þ � 1 l0 0 0

( )
O1x1 þ opð1Þ

( )
¼ T1=2g2sx3 þ opðT

1=2g2Þ;
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where x3 �
R l0

0 ½ð3r2 � 2rl0
Þ=ðl0

Þ
2
�dW ðrÞ � Nð0; 2l0=15Þ: As in results (3) and

(4) above, we can show that when T0
14T1;

T�1=2
XT0

1

t¼T1þ1

½m0
b þ b0

bðt � T0
1Þ�ut ¼ sW ðl0

Þg1 þ opðg1Þ

T�1=2
XT0

1

t¼T1þ1

½m0
b þ b0

bðt � T0
1Þ�xðT1Þ

0
tD

�1=2
T ¼ T�1g1½ 1 l0 1 0 � þ opðT

�1g1Þ:

Hence, when T0
14T1;

g00ðX T0
1
� X T1

Þ
0
ðI � PT1

ÞU

¼ �
XT0

1

t¼T1þ1

½m0
b þ b0

bðt � T0
1Þ�ut

þ
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1
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0
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2
4

3
5 D

�1=2
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T1
X T1

D
�1=2
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� ��1

D
�1=2
T X 0

T1
U

¼ T1=2g1s½�W ðl0
Þ þ ½ 1 l0 1 0 �O1x1� þ opðT

1=2g1Þ

¼ T1=2g1sx4 þ opðT
1=2g1Þ;

where x4 �
R 1

l0 ½ðr � 1Þð3r � 2l0
� 1Þ=ð1 � l0

Þ
2
�dW ðrÞ � Nð0; 2ð1 � l0

Þ=15Þ: There-

fore,

ðXUÞ ¼ T1=2s
g2x3 if T0

1oT1

g1x4 if T0
14T1

þ opð1Þ

( )
:

This implies that ðXUÞ ¼ jT1 � T0
1j

3=2Opð1Þ: Last consider ðUUÞ: We have
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1
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1
� X T1
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1
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T Þ
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1

U
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D
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D
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Note that

T�1=2U 0 CT0
1
� CT1

� �
¼ ðT1 � T0

1Þ½W ðl0
Þ þ opð1Þ�;

T�3=2U 0 BT0
1
� BT1

� �
¼ T1 � T0

1

� � Z 1

l0
W ðrÞdr þ opð1Þ

 !
:

Hence U 0ðX T0
1
� X T1

ÞD
�1=2
T ¼ ðT1 � T0

1Þ½sx
0
2 þ opð1Þ� where x02 � ½0; 0;W ðl0

Þ;R 1

l0 W ðrÞdr�: For the second term, we have D
�1=2
T ðX 0

T1
X T1

� X 0

T0
1

X T0
1
ÞD

�1=2
T ¼

�ðT1 � T0
1ÞT

�1Sf with

Sf �

0 0 1 1 � l0

0 0 l0 1�ðl0Þ2

2

1 l0 1 1 � l0

1 � l0 1�ðl0Þ2

2
1 � l0

ð1 � l0
Þ
2

2
66664

3
77775:

So the second term is equivalent in large samples to �ðT1 � T0
1ÞTs2½x01O2x1 þ opð1Þ�

where

O2 � O�1
1 Sf O�1

1 ¼

� 4

ðl0Þ2
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ðl0Þ3
� 2

ðl0Þ2
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ðl0Þ3
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2
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3
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:

Collecting these results, ðUUÞ ¼ ðT1 � T0
1ÞTs2½2x02O1x1 � x01O2x1 þ opð1Þ�: This

implies that ðUUÞ ¼ jT1 � T0
1jOpðTÞ: We can now prove Theorem 5, concerning

the asymptotic expansion. Define a stochastic process Vnðn;T ; l0;m0
b;b

0
b;sÞ on the set

of integers as follows: Vnð0Þ ¼ 0; VnðnÞ ¼ V1ðnÞ for no0 and VnðnÞ ¼ V 2ðnÞ for
n40; with

V 1ðn;T ; l0;m0
b;b

0
b;sÞ ¼

X0

k¼nþ1

m0
b þ b0

bk
( )2

þ 2sx4T1=2
X0

k¼nþ1

½m0
b þ b0

bk�

þ ns2T ½2x02O1x1 � x01O2x1�;

V 2ðn;T ; l0;m0
b;b

0
b;sÞ ¼

Xn

k¼1

½m0
b þ b0

bk�2 þ 2sx3T1=2
Xn

k¼1

m0
b þ b0

bk
( )

þ ns2T ½2x02O1x1 � x01O2x1�:
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Then the finite sample distribution of ðT̂1 � T0
1Þ can be approximated by ðT̂1 �

T0
1Þ � arg minnVnðn;T ; l0;m0

b;b
0
b;sÞ:

We now consider the standard limiting distribution. Define mT ¼ ðT1 � T0
1Þ=

ffiffiffiffi
T

p
:

We can show that both h1 and h2 are asymptotically equivalent to T3=2ðb0
bÞ

2
jmT j

3=3

and both g1 and g2 are asymptotically equivalent to Tm2b0
b=2; therefore

T�3=2ðXX Þ ¼ ðb0
bÞ

2
jmT j

3=3 þ opð1Þ;

2T�3=2ðXUÞ ¼ m2
Tsb

0
b

x3 þ opð1Þ if m40;

x4 þ opð1Þ if mo0;

�

T�3=2ðUUÞ ¼ mTs2½2x02O1x1 � x01O2x1� þ opð1Þ:

Define Znðm; l0;b0
b;sÞ as follows: Znð0Þ ¼ 0; ZnðmÞ ¼ Z1ðmÞ for mo0 and ZnðmÞ ¼

Z2ðmÞ for m40; with

Z1ðm; l0;b0
b;sÞ ¼ ðb0

bÞ
2
jmT j

3=3 þ m2
Tsb

0
bx4 þ mTs2½2x02O1x1 � x01O2x1� þ opð1Þ;

Z2ðm; l0;b0
b;sÞ ¼ ðb0

bÞ
2
jmT j

3=3 þ m2
Tsb

0
bx3 þ mTs2½2x02O1x1 � x01O2x1� þ opð1Þ:

By the continuous mapping theorem, we have mn
T ¼ ðT̂1 �

T0
1Þ=

ffiffiffiffi
T

p
!d arg minm Znðm; l0; b0

b; sÞ:

A.3.2. The other parameters

Following the proof in Model I.a, we have

T�1D
1=2
T ðĝ� g0Þ

¼ ðD
�1=2
T X 0

T̂1
X T̂1

D
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T Þ
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� X T̂1
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U �
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1ffiffiffiffi

T
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1 � l0
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2

2
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3
777775þ s
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ÞW ðrÞdr

2
66666664

3
77777775

2
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3
77777775
þ opð1Þ

¼ b0
b

T̂1 � T0
1ffiffiffiffi

T
p

0

0

1

0

2
666664

3
777775þ sO1

R 1

0 W ðrÞdrR 1

0 rW ðrÞdrR 1

l0 W ðrÞdrR 1

l0 ðr � l0
ÞW ðrÞdr

2
66666664

3
77777775
þ opð1Þ:

Therefore, the limiting distribution of m̂b depends on the limiting distribution of
T̂1 � T0

1 while the limiting distribution of the other parameters do not. It is easy to
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show that

sO1

R 1

0 W ðrÞdrR 1

0 rW ðrÞdrR 1

l0 W ðrÞdrR 1

l0ðr � l0
ÞW ðrÞdr
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from which the results stated in Theorem 6.3.a follow.

A.4. Model II.b: local disjoint broken trend with Ið0Þ errors

A.4.1. Asymptotics for break date

Again, we only cover the main arguments of the proof for the limiting
distribution. From the result for the rate of convergence, the following pertains to
the set DðCÞ ¼ fT1 : jT1 � T0

1joCg and accordingly we have jl� l0
j ¼ OðT�1Þ for

l ¼ T1=T : From the analysis for Model II.a, we know that ðXX Þ ¼ h1 þ opðh1Þ for

T1oT0
1 and ðXX Þ ¼ h2 þ opðh2Þ for T14T0

1: Next, consider the term ðXUÞ: First if

T14T0
1; then

g00ðX T0
1
� X T1

Þ
0
ðI � PT1

ÞU ¼
XT1
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1
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D
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� ��1

D
�1=2
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U

Note that, (1)
PT1

t¼T0
1
þ1
½m0

b þ b0
bðt � T0

1Þ�ut ¼ OpðjT1 � T0
1j

3=2Þ; (2)
PT1

t¼T0
1
þ1
½m0

b þ

b0
bðt � T0

1Þ�xðT1Þ
0
tD

�1=2
T ¼ OpðjT1 � T0

1j
2T�1=2Þ; and (3) D�1=2X 0

T1
U ¼ Opð1Þ: Since

we look in a set where jT1 � T0
1joC and jl� l0

j ¼ OðT�1Þ; g00ðX T0
1
� X T1

Þ
0PT1

U is

dominated by g00ðX T0
1
� X T1

Þ
0U asymptotically, and ðXUÞ ¼ jT1 � T0

1j
3=2Opð1Þ:

Consider the case T0
14T1 for ðXUÞ;

g00ðX T0
1
� X T1

Þ
0
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ÞU ¼ �
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1

t¼T1þ1
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þ
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Again we can show that g00ðX T0
1
� X T1

Þ
0PT1

U is dominated by g00ðX T0
1
� X T1

Þ
0U

asymptotically. Therefore,

ðXUÞ ¼

PT1

t¼T0
1
þ1
½m0

b þ b0
bðt � T0

1Þ�ut þ opð1Þ if T14T0
1;

0 if T1 ¼ T0
1;

�
PT0

1
t¼T1þ1½m

0
b þ b0

bðt � T0
1Þ�ut þ opð1Þ if T1oT0

1:

8>>><
>>>:

Last, consider ðUUÞ: Note that

T�1=2U 0ðCT0
1
� CT1

Þ ¼ T�1=2
XmaxfT1;T

0
1
g

t¼minfT1;T
0
1
gþ1

ut ¼ T�1=2jT1 � T0
1j

1=2Opð1Þ

T�3=2U 0ðBT0
1
� BT1

Þ ¼ jT1 � T0
1jT

�1Opð1Þ:

Hence, U 0ðX T0
1
� X T1

ÞD
�1=2
T ¼ jT1 � T0

1j
1=2OpðT

�1=2Þ: Then following the same

arguments as for Model I.b, ðUUÞ ¼ jT1 � T0
1j

1=2OpðT
�1=2Þ: Following Bai (1997),

we define a stochastic process SnðmÞ on the set of integers as follows: Snð0Þ ¼ 0;
SnðmÞ ¼ S1ðmÞ for mo0 and SnðmÞ ¼ S2ðmÞ for m40; with

S1ðmÞ ¼
X0

k¼mþ1

ðm0
b þ b0

bkÞ2 � 2
X0

k¼mþ1

ðm0
b þ b0

bkÞuk; m ¼ �1;�2; . . . ;

S2ðmÞ ¼
Xm

k¼1

ðm0
b þ b0

bkÞ2 þ 2
Xm

k¼1

ðm0
b þ b0

bkÞuk; m ¼ 1; 2; . . . :

Under the assumption that futg is strictly stationary and has a continuous
distribution, the rest of the proof is similar to that of Bai (1997, p. 562) and, hence,
omitted.
A.4.2. The other parameters

Similar to Model II.a, we have
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R 1

0 dW ðrÞR 1

0 r dW ðrÞR 1

l0 dW ðrÞR 1

l0 ðr � l0
ÞdW ðrÞ

2
66666664

3
77777775

2
66666664

3
77777775

þ opð1Þ
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¼ b0
bðT̂1 � T0

1ÞT
1=2

0

0

1

0

2
666664

3
777775þ sO1

R 1

0 dW ðrÞR 1

0 r dW ðrÞR 1

l0 dW ðrÞR 1

l0ðr � l0
ÞdW ðrÞ

2
66666664

3
77777775
þ opð1Þ:

The results of Theorem 6.4.a follow using (A.7) and (A.8).
A.5. Model III.a—disjoint broken trend with Ið1Þ errors

A.5.1. Asymptotics for break date

Note that in Model III, the regressors are ½i; t;C;Bdj �: Assuming again that
T14T0

1;

xðT0
1Þt � xðT1Þt ¼

½0 0 0 0� if tpT0
1

½0 0 1 t� if T0
1 þ 1ptpT1

½0 0 0 0� if tXT1 þ 1:

8><
>:

First consider the term ðXX Þ: We have

g00ðX T0
1
� X T1

Þ
0
ðX T0

1
� X T1

Þg0 ¼
XT1

t¼T0
1
þ1

ðb0
bÞ

2t2 þ 2b0
bm

0
bt þ ðm0

bÞ
2

( )

¼ jT1 � T0
1jOðT2Þ

g00ðX T0
1
� X T1

Þ
0PT1

ðX T0
1
� X T1

Þg0

¼ g00ðX T0
1
� X T1

Þ
0X T1

D
�1=2
T ðD

�1=2
T X 0

T1
X T1

D
�1=2
T Þ

�1D
�1=2
T X 0

T1
ðX T0

1
� X T1

Þg0:

It is obvious that D
�1=2
T X 0

T1
X T1

D
�1=2
T ¼ Oð1Þ: The first two rows of D

�1=2
T X 0

T1
ðX T0

1
�

X T1
Þg0 are zero while the last two rows are

T�1=2
PT1

t¼T0
1
þ1

m0
b

T�3=2
PT1

t¼T0
1
þ1

b0
bt2

2
64

3
75 ¼

m0
bjT1 � T0

1jOðT�1=2Þ

b0
bjT1 � T0

1jOðT1=2Þ

" #
:

Hence g00ðX T0
1
� X T1

Þ
0PT1

ðX T0
1
� X T1

Þg0 ¼ jT1 � T0
1j

2OðTÞ: Therefore ðXX Þ ¼

jT1 � T0
1jOðT2Þ þ jT1 � T0

1j
2OðTÞ:

Then consider ðXUÞ: Let DT ¼ diagðT ;T3;T ;T3Þ: We have

g00ðX T0
1
� X T1

Þ
0U ¼

XT1

t¼T0
1
þ1

½m0
but þ b0

btut�pjT1 � T0
1jOpðT

3=2Þ
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g00ðX T0
1
� X T1

Þ
0PT1

U

¼ g00ðX T0
1
� X T1

Þ
0X T1

D
�1=2
T ðD

�1=2
T X 0

T1
X T1

D
�1=2
T Þ

�1D
�1=2
T X 0

T1
U :

Since D
�1=2
T X 0

T1
U ¼ OpðTÞ; D

�1=2
T X 0

T1
X T1

D
�1=2
T ¼ Oð1Þ and g00ðX T0

1
� X T1

Þ
0X T1

D
�1=2
T ¼ jT1 � T0

1jOðT1=2Þ; we have g00ðX T0
1
� X T1

Þ
0PT1

UpjT1 � T0
1jOpðT

3=2Þ:

Therefore ðXUÞpjT1 � T0
1jOpðT

3=2Þ:

Last, consider ðUUÞ: Since D
�1=2
T X 0

T1
U ¼ OpðTÞ; D

�1=2
T X 0

T0
1

U ¼ OpðTÞ;

D
�1=2
T X 0

T0
1

X T0
1
D

�1=2
T ¼ Oð1Þ; D

�1=2
T X 0

T0
1

X T0
1
D

�1=2
T ¼ Oð1Þ; the first two rows of

D
�1=2
T ðX T0

1
� X T1

Þ
0U are zero while the last two rows of D

�1=2
T ðX T0

1
� X T1

Þ
0U are

equal to

T�1=2
PT1

t¼T0
1

ut

T�3=2
PT1

t¼T0
1
þ1

tut

2
64

3
75pjT1 � T0

1jOpð1Þ:

Moreover, it is easy to show that D
�1=2
T X 0

T1
X T1

� X 0

T0
1

X T0
1

� �
D

�1=2
T ¼ jT1 �

T0
1jOðT�1Þ: Therefore, U 0ðPT0

1
� PT1

ÞUpjT1 � T0
1jOpðTÞ: This proves Lemma 1.5.

Consider the issue of consistency. From Lemma 1, the term ðXX Þ dominates
whatever the order of jT1 � T0

1j: Hence, minimizing SSRðT1Þ is equivalent to
minimizing ðXX Þ: Since the latter is positive, it must converge to 0 to ensure that
inequality (4) is satisfied. Accordingly, ðXX Þ ¼ opð1Þ; and jl̂� l0

j ¼ opðT
�3Þ:

A.5.2. The other parameters

We have

T�1D
1=2
T ðĝ� g0Þ

¼ D
�1=2
T X 0

T̂1
X T̂1

D
�1=2
T

� ��1

T�1D
�1=2
T X 0

T̂1
ðX T0

1
� X T̂1

Þg0 þ T�1D
�1=2
T X 0

T̂1
U

h i
Note that T�1D

�1=2
T X 0

T̂1
ðX T0

1
� X T̂1

Þg0 ¼ jT̂1 � T0
1jOðT�1=2Þ ¼ opð1Þ; hence we have

T�1D
�1=2
T X 0

T̂1
ðX T0

1
� X T̂1

Þg0 þ T�1D
�1=2
T X 0

T̂1
U ¼ T�1D

�1=2
T X 0

T̂1
U þ opð1Þ

) s
Z 1

0

W ðrÞdr;

Z 1

0

rW ðrÞdr;

Z 1

l0
W ðrÞdr;

Z 1

l0
rW ðrÞdr

 !0
which is Normally distributed with variance–covariance matrix s2Sg and

Sg �

1
3

5
24

2�3ðl0Þ2þðl0Þ3

6
5þ3ðl0Þ4�8ðl0Þ3

24

5
24

2
15

5þðl0Þ4�6ðl0Þ2

24
4þðl0Þ5�5ðl0Þ3

30

2�3ðl0Þ2þðl0Þ3

6
5þðl0Þ4�6ðl0Þ2

24
1�3ðl0Þ2þ2ðl0Þ3

3
5þ9ðl0Þ4�8ðl0Þ3�6ðl0Þ2

24

5þ3ðl0Þ4�8ðl0Þ3

24
4þðl0Þ5�5ðl0Þ3

30
5þ9ðl0Þ4�8ðl0Þ3�6ðl0Þ2

24
2þ3ðl0Þ5�5ðl0Þ3

15

2
6666664

3
7777775
:
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Note that this implies that the distribution of ĝ is independent of the limiting
distribution of T̂1 � T0

1: Now,

D
�1=2
T X 0

T̂1
X T̂1

D
�1=2
T !pSh �

1 1
2 1 � l0 1�ðl0Þ2

2

1
2

1
3

1�ðl0Þ2

2
1�ðl0Þ3

3

1 � l0 1�ðl0Þ2

2
1 � l0 1�ðl0Þ2

2

1�ðl0Þ2

2
1�ðl0Þ3

3
1�ðl0Þ2

2
1�ðl0Þ3

3

2
6666664

3
7777775

(A.9)

and

ðD
�1=2
T X 0

T̂1
X T̂1

D
�1=2
T Þ

�1
!pS�1

h

�

4

l0 � 6

ðl0Þ2
� 4

l0
6

ðl0Þ2

� 6

ðl0Þ2
12

ðl0Þ3
6

ðl0Þ2
� 12

ðl0Þ3

� 4

l0
6

ðl0Þ2
4 4ðl0Þ2�2l0þ1

l0ð1�l0Þ3
�6 4ðl0Þ2�3l0þ1

ðl0Þ2ð1�l0Þ3

6

ðl0Þ2
� 12

ðl0Þ3
�6 4ðl0Þ2�3l0þ1

ðl0Þ2ð1�l0Þ3
12 3ðl0Þ2�3l0þ1

ðl0Þ3ð1�l0Þ3

2
666666664

3
777777775
: ðA:10Þ

Therefore, T�1D
1=2
T ðĝ� g0Þ is asymptotically Normally distributed with zero mean

and variance-covariance matrix s2S�1
h SgS�1

h which is as stated in Theorem 6.5.

A.6. Model III.b—disjoint broken trend with Ið0Þ errors

A.6.1. Asymptotics for break date

Model III.b is same as III.a except that the error term ut is Ið0Þ; hence again
ðXX Þ ¼ jT1 � T0

1jOðT2Þ þ jT1 � T0
1j

2OðTÞ: Now consider ðXUÞ; we have

g00ðX T0
1
� X T1

Þ
0U ¼

XT1

t¼T0
1
þ1

m0
but þ b0

btut

( )
pjT1 � T0

1jOpðTÞ;

g00ðX T0
1
� X T1

Þ
0PT1

U

¼ g00ðX T0
1
� X T1

Þ
0X T1

D
�1=2
T D

�1=2
T X 0

T1
X T1

D
�1=2
T

� ��1

D
�1=2
T X 0

T1
U :

Since D
�1=2
T X 0

T1
U ¼ Opð1Þ; D

�1=2
T X 0

T1
X T1

D
�1=2
T ¼ Opð1Þ and g00ðX T0

1
�

X T1
Þ
0X T1

D
�1=2
T ¼ jT1 � T0

1jOðT1=2Þ; we have g00ðX T0
1
� X T1

Þ
0PT1

UpjT1 �

T0
1jOpðT

1=2Þ: Therefore ðXUÞpjT1 � T0
1jOpðTÞ:

Last consider the term ðUUÞ: Since D
�1=2
T X 0

T1
U ¼ Opð1Þ; D

�1=2
T X 0

T0
1

U ¼ Opð1Þ;

D
�1=2
T X 0

T0
1

X T0
1
D

�1=2
T ¼ Oð1Þ; D

�1=2
T X 0

T1
X T1

D
�1=2
T ¼ Oð1Þ; the first two rows of

D
�1=2
T ðX T0

1
� X T1

Þ
0U are zero while the last two rows of D

�1=2
T ðX T0

1
� X T1

Þ
0U
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are equal to

T�1=2
PT1

t¼T0
1

ut

T�3=2
PT1

t¼T0
1
þ1

tut

2
64

3
75pjT1 � T0

1jOpðT
�1=2Þ:

Moreover, it is easy to show that D
�1=2
T X 0

T1
X T1

� X 0

T0
1

X T0
1

� �
D

�1=2
T ¼ jT1 �

T0
1jOðT�1Þ: Therefore, ðUUÞpjT1 � T0

1jOpðT
�1=2Þ: This proves Lemma 1.6. The

remaining steps to show that jl̂� l0
j ¼ opðT

�3Þ are exactly as for Model III.a.

A.6.2. The other parameters

We have

D
1=2
T ðĝ� g0Þ ¼ ðD

�1=2
T X 0

T̂1
X T̂1

D
�1=2
T Þ

�1 D
�1=2
T X 0

T̂1
ðX T0

1
� X T̂1

Þg0 þ D
�1=2
T X 0

T̂1
U

h i
Note that D

�1=2
T X 0

T̂1
ðX T0

1
� X T̂1

Þg0 ¼ jT̂1 � T0
1jOðT1=2Þ ¼ opð1Þ; hence we have

D
�1=2
T X 0

T̂1
ðX T0

1
� X T̂1

Þg0 þ D
�1=2
T X 0

T̂1
U ¼ D

�1=2
T X 0

T̂1
U þ opð1Þ

) s

R 1

0 dW ðrÞR 1

0 r dW ðrÞR 1

l0 dW ðrÞR 1

l0 r dW ðrÞ

2
66666664

3
77777775
� Nð0; s2ShÞ

with Sh defined by (A.9). Hence, D
1=2
T ðĝ� g0Þ!dNð0;S�1

h Þ with S�1
h defined by

(A.10). The distribution of ĝ is independent of the limiting distribution of T̂1 � T0
1:
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